

Engineered Frac'd Well Flowbacks & Reservoir Evaluation

Oilfield Data Services, Inc.

- Oil & Gas Reservoir Testing and Evaluation
- ✓ Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- ✓ Well(s) Performance Tracking

- ✓ Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- ✓ Life Of Well Surveillance/Analysis
- ✓ Automated PVT Calibration

Oilfield Data Services, Inc.

ODSI Deliverables

- 1. Pre-flowback Equipment & Setup inspection
- 2. "Engineered Flowback" – Optimize Rate without Damaging the FDR
- 3. Modeled Rates and Calculated BHPs
- 2/3-Phase and Reservoir BBL TTA Functions 4.
- 5. Fracture Dominated Region (FDR) and Matrix Properties
- 6 FDR Volumes and Recoverable Volumes
- 7. Matrix Volumes and Recoverable Volumes

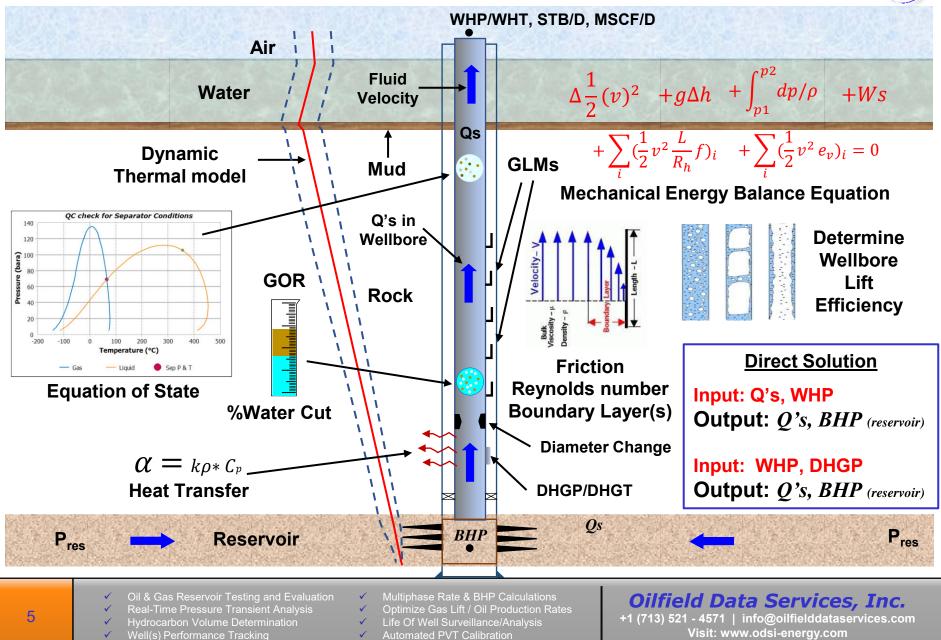
- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination Well(s) Performance Tracking
- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates \checkmark
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

ODSI Philosophy

- 1. Get as much information as you can (especially about the frac/FDR) before the well starts to produce hydrocarbons at the sand/frac face
- 2. Balance the need for DP to Clean-up the Well vs. Excessive Proppant Stress
- 3. Get a baseline on frac performance as soon as you can; try to get it twice
- Do you very best to model the rates properly 4.
- 5. LISTEN to the Choke during the flowback. Mark down when you first hear free gas at the choke!
- Monitor Reservoir Barrel Productivity and adjust CK appropriately 6.
- 7. Only Shut-in only if you have to

- \checkmark Oil & Gas Reservoir Testing and Evaluation
 - Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

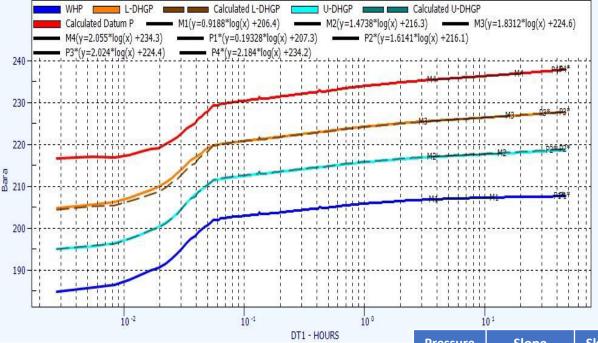

ODSI's 3-Phase flow model (Wellbore Physics + Good PVT)

- Developed on high-rate wells in the North & Norwegian Sea in 2017
- ODSI's Wellbore Model accounts for PVT and phase-thermal changes in the wellbore
- Applicable to frac flowbacks and multiphase flow with exceptionally good results providing accurate BHP's
- Once flow rates are modeled and BHP's calculated, most frac flowback data can be analyzed for minimum recoverable oil and/or gas volume
- Usually, the first 6 weeks of a well's production life can be analyzed to determine the total likely recoverable oil and/or gas volume (with matrix contribution)

- 7
- Oil & Gas Reservoir Testing and Evaluation
 Real Time Pressure Transient Analysis
- ✓ Real-Time Pressure Transient Analysis
 - Hydrocarbon Volume Determination
- Well(s) Performance Tracking

- ✓ Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

ODSI's Wellbore Solution, 1, 2, & 3-Phase



Importance of mid-completion BHP 🐽

ODSI

Date created : 12/27/2015 3:41 PM

PTA was performed on:

- WHP
- Upper DHGP
- Lower DHGP
- Calculated BHP

Pressure	Slope (bar/cycle)	Skin	DP Skin (bar)	Perm (md)	Kh (md-m)	P* (Bara)	ROI (m)
WHP	0.92	20.8	16.8	361	8329	207.9	1221
U-DHGP	1.47	10.5	13.4	222	5109	220.9	974
L-DHGP	1.83	6.4	10.3	175	4044	230.5	880
BHP	2.06	3.6	6.4	154	3541	240.8	837

Failure to use valid BHP for the analysis leads to overestimation of skin & perm and underestimation of reservoir pressure!

- ✓ Oil & Gas Reservoir Testing and Evaluation
- ✓ Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- ✓ Well(s) Performance Tracking

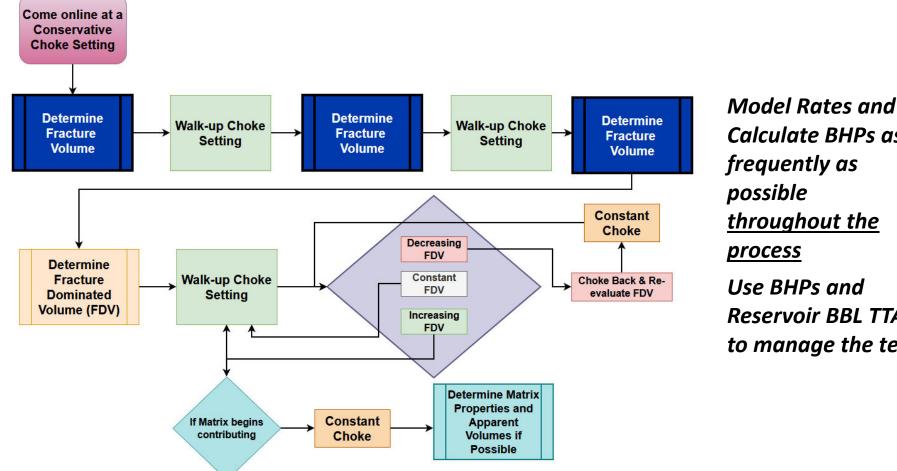
6

- Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc. +1 (713) 521 - 4571 | info@oilfielddataservices.com

ODSI Workflow – Prep Work

- 1. **Build Wellbore Model**
 - PVT (frac fluid and formation water), produced hydrocarbons
 - Flow Path/Piping with Estimated Friction/Roughness
 - Wellbore Thermals, Especially for Gas Wells
- **Review Frac Program and Replay Analysis** 2.
- 3. Determine Critical Unloading Velocities/Rates
- Develop a Plan to Achieve the Well Test Objectives 4.
- 5. Develop Residence Time Equations per Phase Splits
- Establish Contingencies and Safety Constraints 6.
- Coordinate with Company Man and Well Testers to Ensure the Test is 7. Conducted Properly and Safely


- Oil & Gas Reservoir Testing and Evaluation \checkmark
- Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

ODSI Workflow – Flowback Process Example

Calculate BHPs as frequently as possible throughout the process Use BHPs and Reservoir BBL TTA to manage the test

8

- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis Hvdrocarbon Volume Determination
- Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations \checkmark
- \checkmark Optimize Gas Lift / Oil Production Rates
- \checkmark Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

ODSI Workflow – Flowback Example

- Bring the well online on a conservative choke (usually a 12/64'') 1.
- 2. After a baseline evaluation of the frac has been achieved (typically about 2-4 hrs), increase the choke by 2/64'' (to 14/64'') (~ 4 hrs)
- 3. Continue choke walk-up if advisable (as evaluated from the data)
- 4. Determine the maximum FDR choke (Until matrix contribution begins), then change the choke to that setting and flow the well for 24 HRS. (Can do a choke walk-up)
- 5. Choke back the well if the analysis reveals any signs of excessive stress on the proppant
- 6. Evaluate the drawdown/Analyze the well every 24 hours; determine if the choke can be increased (determine if the FDV is constant or increasing)
- If the matrix begins to contribute, keep the choke constant until it can be evaluated 7.
- 8. Model Rates and Calculate BHPs as frequently as possible. Use BHPs and Reservoir BBL TTA to manage the test

- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hydrocarbon Volume Determination Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates \checkmark
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

 \checkmark

ODSI Workflow – Quick Flowback Analysis

1. USE MODELED RATE AND CALCULATED BHP

- Calculate TTA-RB 2
- Use BHP and TTA-RB to determine the baseline decay and if 3. the system is being stressed on subsequent choke increases
- Err on the side of caution you can always bump the choke 4. later
- Check Linear Plots if the Cartesian Plots do not look 5. consistent
- Do not try to manage the test solely on WHP once we have 6. hydrocarbons in the well bore

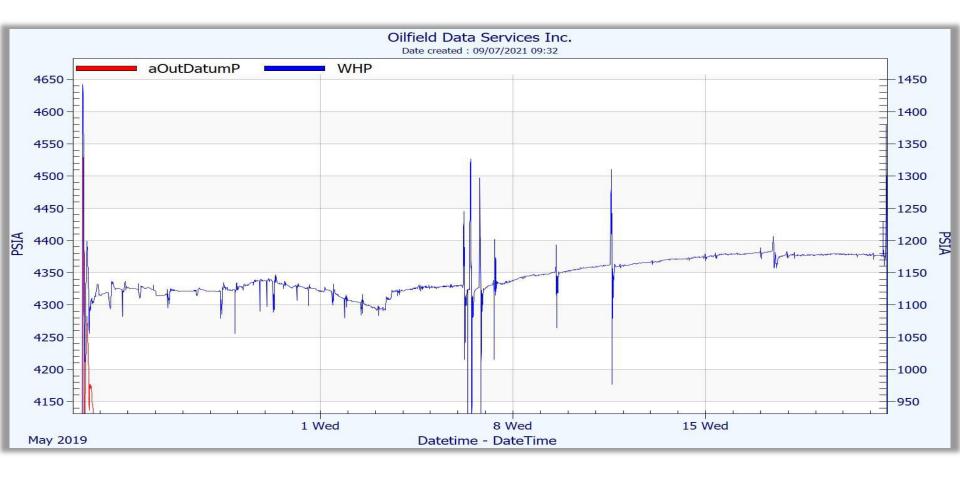
- \checkmark Oil & Gas Reservoir Testing and Evaluation
 - Real-Time Pressure Transient Analysis

 - Hvdrocarbon Volume Determination
 - Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Frac Flowback Example 1: **Calculated BHP**

- 11
- Oil & Gas Reservoir Testing and Evaluation \checkmark \checkmark
- Real-Time Pressure Transient Analysis
- \checkmark Hydrocarbon Volume Determination
 - Well(s) Performance Tracking


- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates \checkmark
- \checkmark Life Of Well Surveillance/Analysis
- Automated PVT Calibration

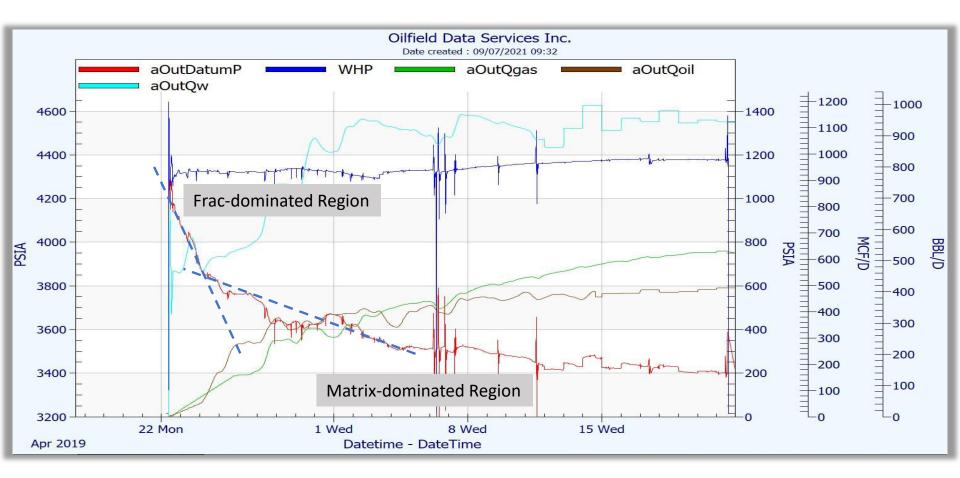
Oilfield Data Services, Inc.

Example 1:

3-phase Horizontal WHPs – Can Surface Data be Analyzed?

- 12
- \checkmark Oil & Gas Reservoir Testing and Evaluation \checkmark
 - Real-Time Pressure Transient Analysis

 - Hydrocarbon Volume Determination Well(s) Performance Tracking
- \checkmark Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates \checkmark
- \checkmark Life Of Well Surveillance/Analysis
- Automated PVT Calibration


Oilfield Data Services, Inc.

Example 1:

3-phase Horizontal Well Example:

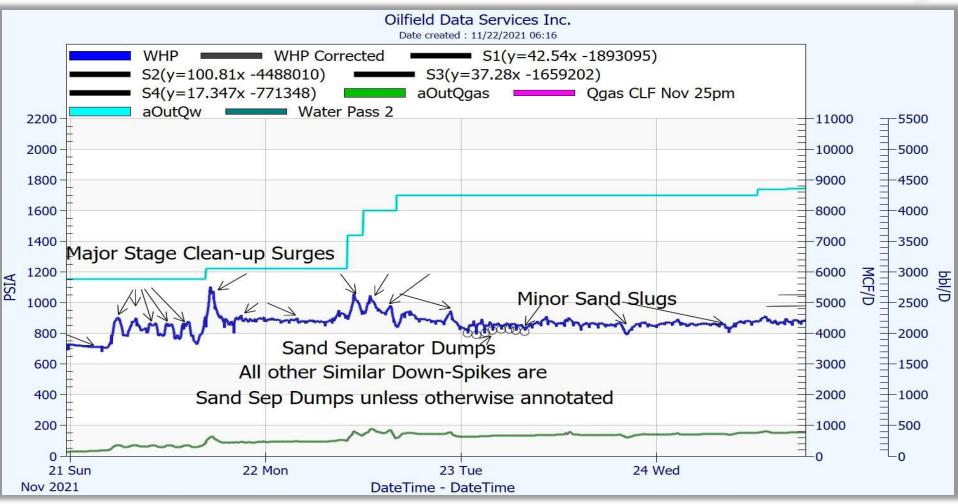
Modeled Production Rates and Calculated BHP

- \checkmark Oil & Gas Reservoir Testing and Evaluation
 - Real-Time Pressure Transient Analysis

 - Hydrocarbon Volume Determination
 - Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

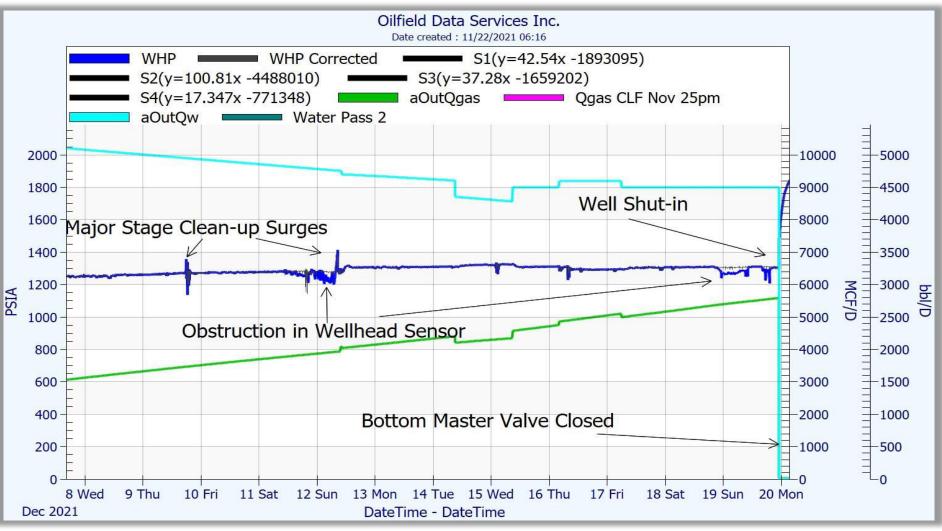

Frac Flowback Example 2: Analyzing WHP & BHP

- 14
- ✓ C ✓ F
- Oil & Gas Reservoir Testing and Evaluation
 Real-Time Pressure Transient Analysis
 - Hydrocarbon Volume Determination
 - Well(s) Performance Tracking

- ✓ Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- ✓ Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

Example 2: Minor & Major Frac Stage Cleanups



- Perf/stage clean-up surges are observed as spike ups in the WHP
- Longer (1-2 hrs long) dips in WHP are caused by water slugs and sand slugs

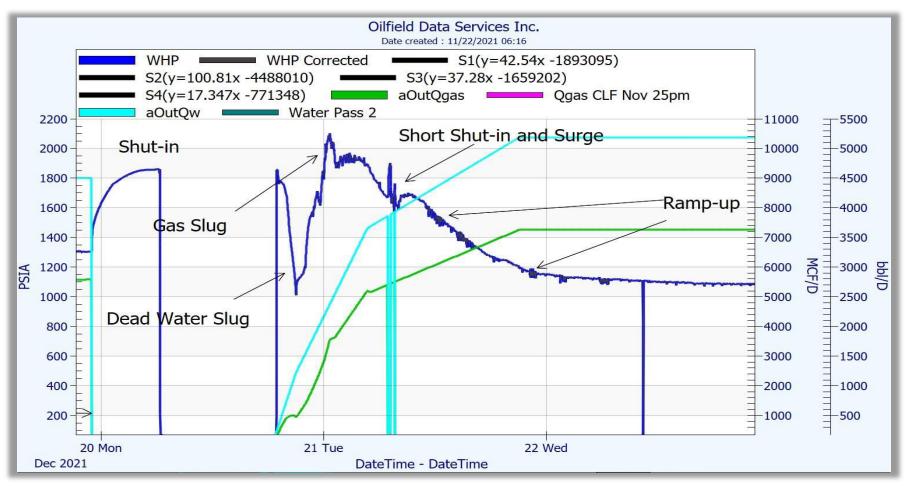
- Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Example 2: Major Stage Cleanup Surge & Obstruction at **Wellhead Sensor**

16

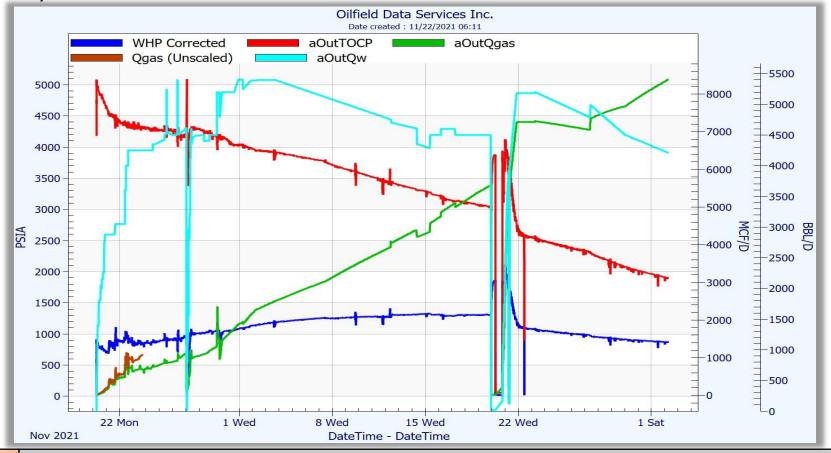
- \checkmark Oil & Gas Reservoir Testing and Evaluation


 - Real-Time Pressure Transient Analysis
 - Hydrocarbon Volume Determination
 - Well(s) Performance Tracking

- \checkmark Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

Example 2: Bringing the Well BOL after Emergency Safety Valve shut-in


As the well was brought back on-line, a dead water slug was observed, followed by a gas surge, ٠ before achieving proper mixing of fluids in the well bore

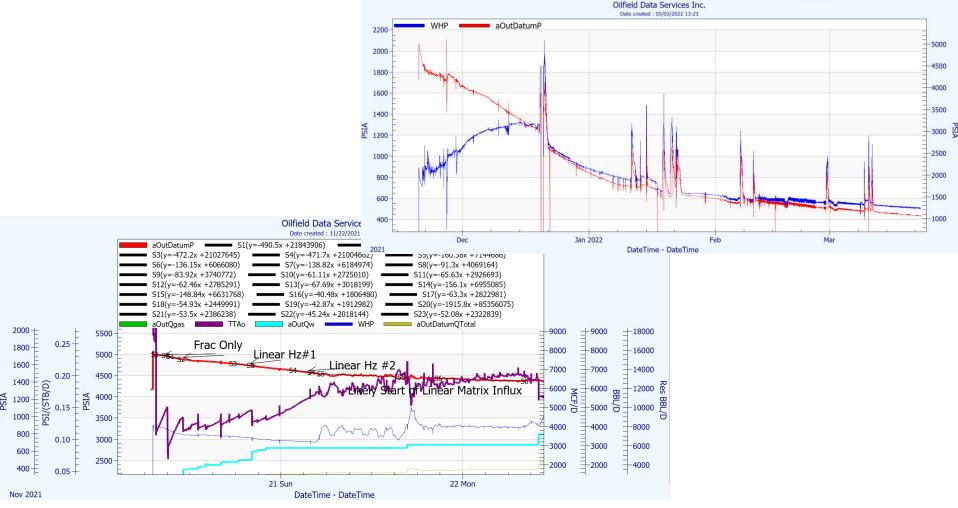
- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hydrocarbon Volume Determination
- Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Example 2: Data Processing – BHP Conversion

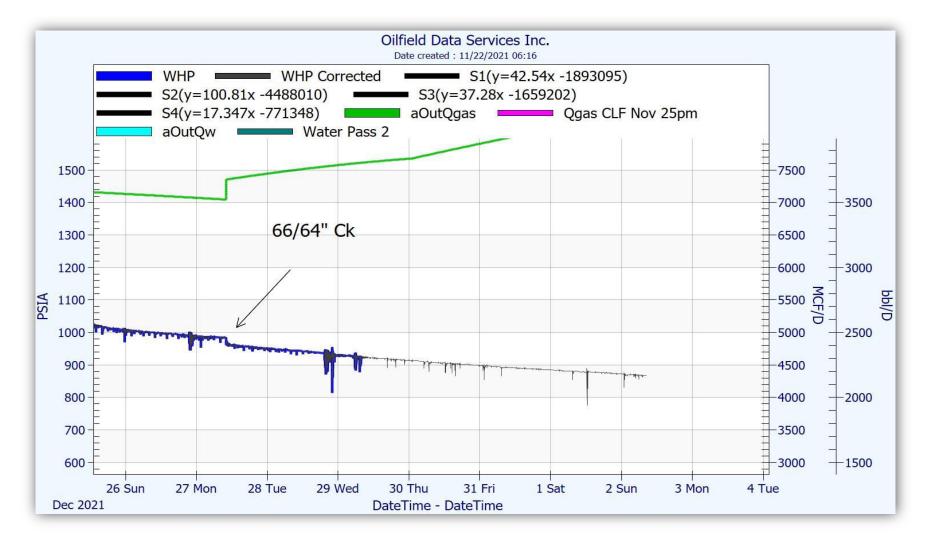
- BHP conversion was performed at datum depth (heel) using WHP and Test Separator and modeled rates using ODSI's numerical solution to Mechanical Energy Balance Equation
- Failure to account for thermals and density changes in the wellbore lead to erroneous analysis and invalid reservoir volume calculations

- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hydrocarbon Volume Determination
- Well(s) Performance Tracking


- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

Example 2: Early Startup Data & Observed Frac Volume


- Frac volume was observed initially (1st 3 hrs of flow)
- Linear horizontal volumes observed thereafter
- ✓ Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hydrocarbon Volume Determination
- Well(s) Performance Tracking

19

- Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- ✓ Life Of Well Surveillance/Analysis
- Automated PVT Calibration

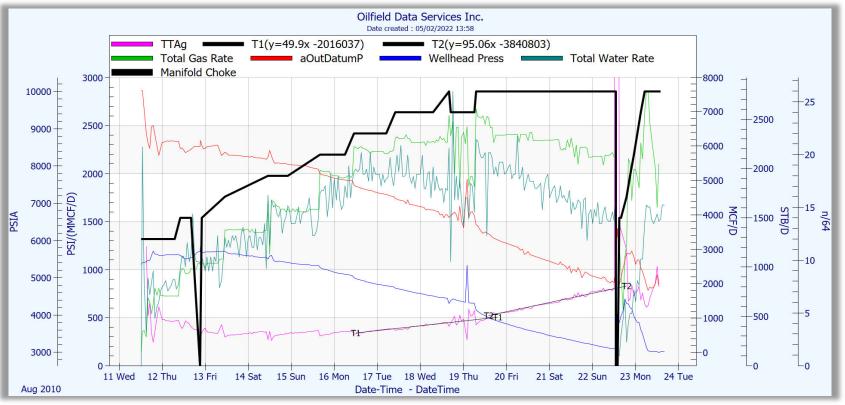
Oilfield Data Services, Inc.

Example 2: Final CK Setting

- \cap
- ✓ Oil & Gas Reservoir Testing and Evaluation
- ✓ Real-Time Pressure Transient Analysis
- Hydrocarbon Volume Determination
- ✓ Well(s) Performance Tracking

- ✓ Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- ✓ Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.


Frac Flowback Example 3: **Evaluating Stress on the Proppant/ Fracture Dominated Region**

- \checkmark Oil & Gas Reservoir Testing and Evaluation
- Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- Well(s) Performance Tracking

- \checkmark Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

Oilfield Data Services, Inc.

Example 3: Frac Flowback – Excessive Drawdown/Stress on the formation

• The above is an example of historic data to identify if the formation was stressed due to excessive drawdown

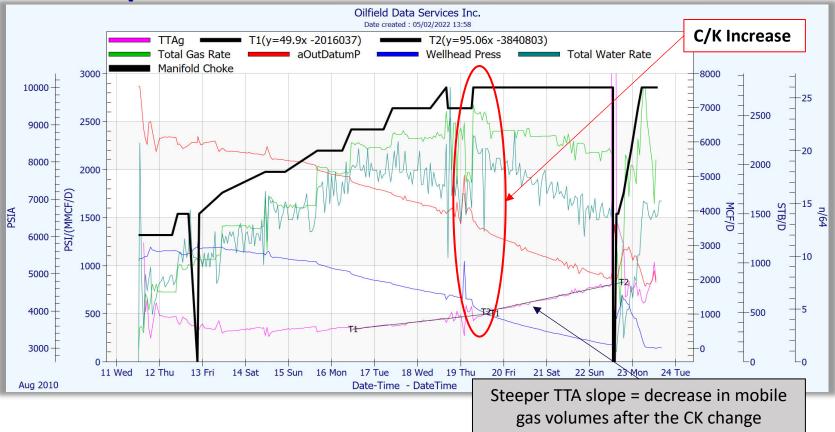
• <u>Note:</u>

22

ODSI uses the 'Thermodynamic Transient Analysis' or Relative Inverse Productivity function to quantify mobile HC volumes.

$$TTA = \frac{P_{initial} - P_{wf}}{Rate}$$

- ✓ Oil & Gas Reservoir Testing and Evaluation
- ✓ Real-Time Pressure Transient Analysis
- Hvdrocarbon Volume Determination
- ✓ Well(s) Performance Tracking


- ✓ Multiphase Rate & BHP Calculations
- ✓ Optimize Gas Lift / Oil Production Rates
- ✓ Life Of Well Surveillance/Analysis
- ✓ Automated PVT Calibration

Oilfield Data Services, Inc.

Example 3: Frac Flowback – Was the Formation Stressed?

- The TTA slope is a direct indicator of how much volume is moving toward the well. An increase in the slope indicates a decrease in the volume; a reduction in the slope indicates an increase in the volume.
- In this example, an increase in the choke setting resulted in stressing the formation as displayed by a reduction in mobile hydrocarbon volume from the TTA
- Recommendation: Choke the well back to a reduced setting and re-evaluate the mobile hydrocarbon volume
 - Oil & Gas Reservoir Testing and Evaluation
 - Real-Time Pressure Transient Analysis

 - Hydrocarbon Volume Determination

23

Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration

ODSI Philosophy

- 1. Get as much information as you can (especially about the frac/FDR) before the well starts to produce hydrocarbons at the sand/frac face
- 2. Balance the need for DP to Clean-up the Well vs. Excessive Proppant Stress
- 3. Get a baseline on frac performance as soon as you can; try to get it twice
- Do you very best to model the rates properly 4.
- 5. LISTEN to the Choke during the flowback. Mark down when you first hear free gas at the choke!
- Monitor Reservoir Barrel Productivity and adjust CK appropriately 6.
- 7. Only Shut-in only if you have to

- \checkmark Oil & Gas Reservoir Testing and Evaluation
 - Real-Time Pressure Transient Analysis

 - Hvdrocarbon Volume Determination
 - Well(s) Performance Tracking

- Multiphase Rate & BHP Calculations \checkmark
- Optimize Gas Lift / Oil Production Rates
- Life Of Well Surveillance/Analysis
- Automated PVT Calibration