Well Evaluation Methods Renaissance Offshore - ODSI August 31, 2016

Outline

- Overview: Find the Pressure Drop (that shouldn't be there)
- The Basics:
 - Elementary Well Test Analysis
 - Decline Analysis
 - Inverse Productivity Analysis
 - Nodal Analysis, Simulation & Transient Nodal
- Test Planning/Design Basics
 - Do you already have the answer?
 - What are the objectives?
 - What do you need to measure?
- Advanced Diagnostics

Well Diagnostics: Pressure Drop

- Well Bore (head & friction + obstructions)
- Completion (Plugging and Skin)
- 1-phase Reservoir (Perm and Compaction)
- Multi-phase Reservoir (blockage and preferential flow)
- Always consider: Is it a wellbore or a reservoir effect?

What is Well Testing (PTA)?

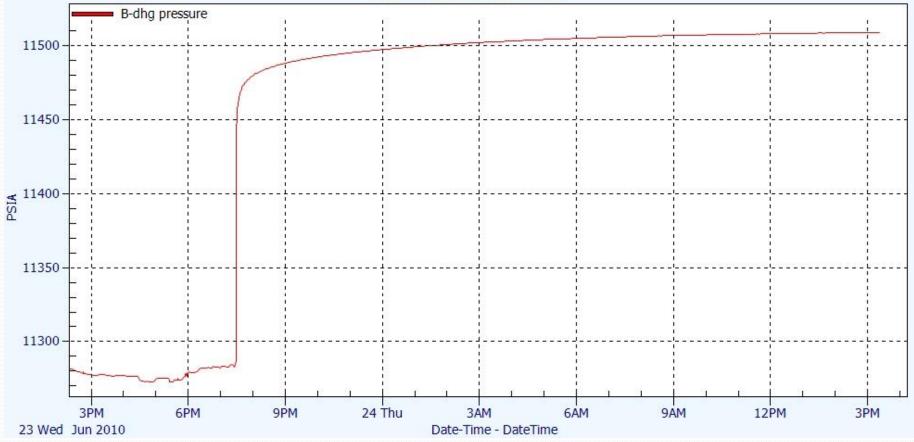
- Build-up (PBU)
- Drawdown
- 2-rate (PBU or DD)
- What Does it Get you? kh, skin, PI and Preservoir

What is Decline/IP Analysis

- Conventional: DP/DT
- TTA or IPA: D(P/Q)/DT
- What Does it Get You? Hydraulically Connected Volume Mobile Compressible Volume

What Is Nodal Analysis

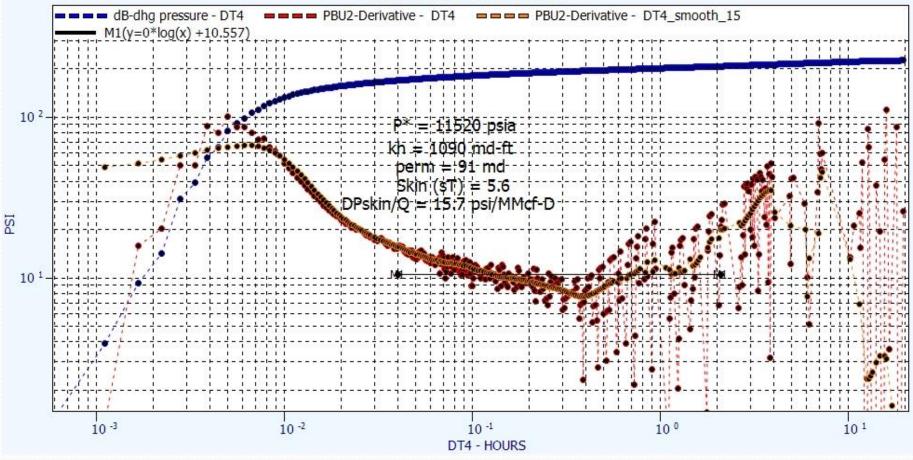
- Plot Reservoir Inflow Equation/Inflow Performance Curve
- Plot Vertical Lift Performance
- What does it get you?
 - Ability to predict BHP at a given rate or vice versa
 - Ability to determine change in skin for constant perm
 - Ability to determine change in perm for a constant skin
- What it doesn't get you: skin and perm


Analysis Type Examples

- Build-up PTA Derivative
- Drawdown PTA Semilog
- Horner P*
- 2-Rate Test
- RTA (Rate Transient)
- P/z (gas) or Static MBAL (oil)
- Conventional Decline Analysis (Running MBAL)
- IPA (Running EBAL)
- MBAL/EBAL "bookends"
- NODAL ANALYSIS
- Simulated Rates/Pressure vs. Actual

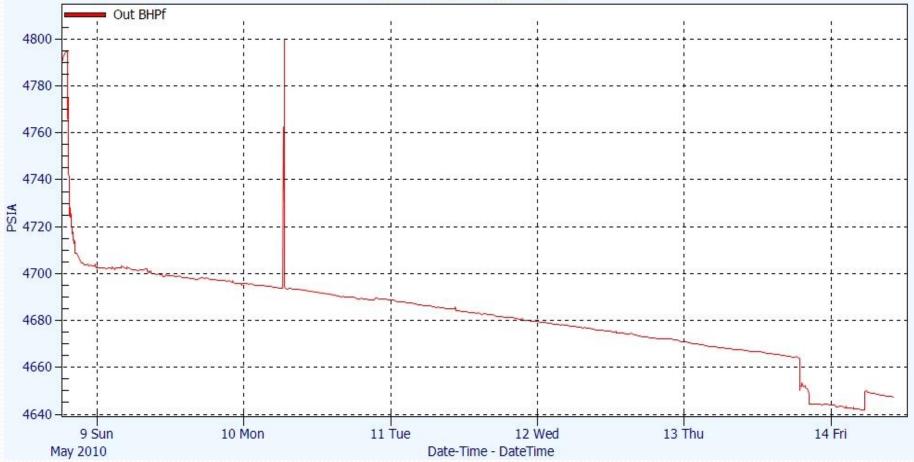
Build-up PTA

Oilfield Data Services Inc.


Date created : 8/14/2010 4:11 PM

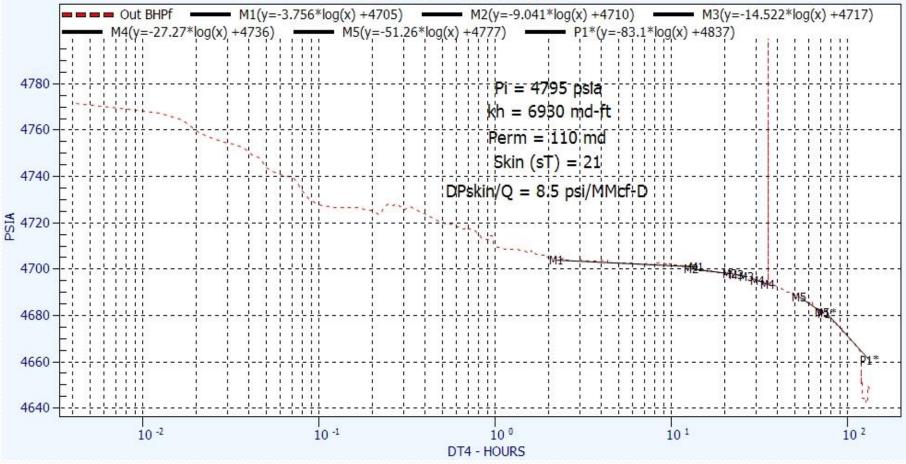
Build-up Derivative Analysis

Oilfield Data Services Inc.

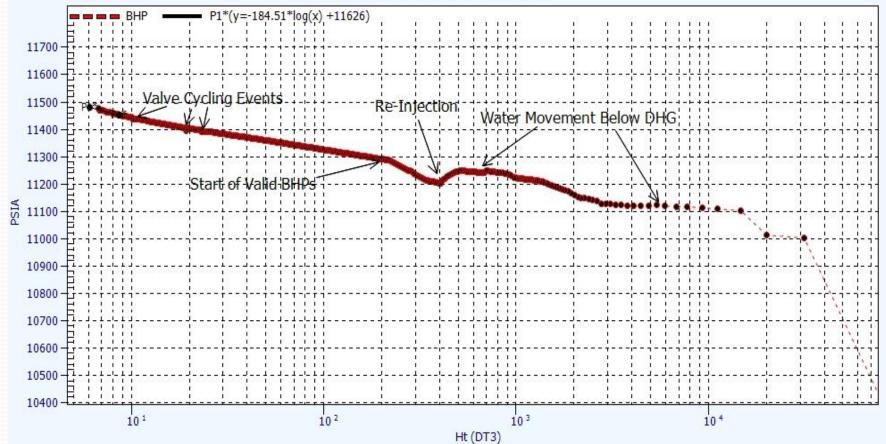

Date created : 6/29/2010 5:31 PM

Drawdown - PTA

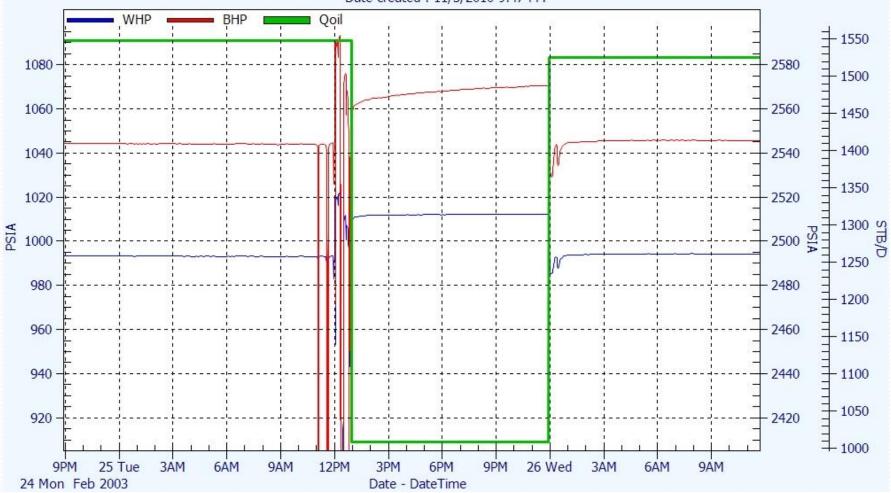
Oilfield Data Services Inc.


Date created : 8/14/2010 5:03 PM

Drawdown PTA – Semi-log Analysis

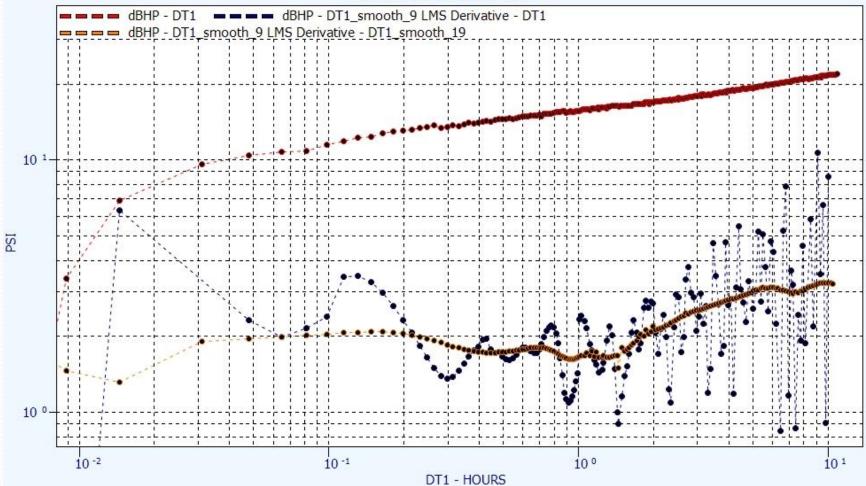

Oilfield Data Services Inc.

Date created : 5/15/2010 12:13 AM


Horner Plot – P* Determination

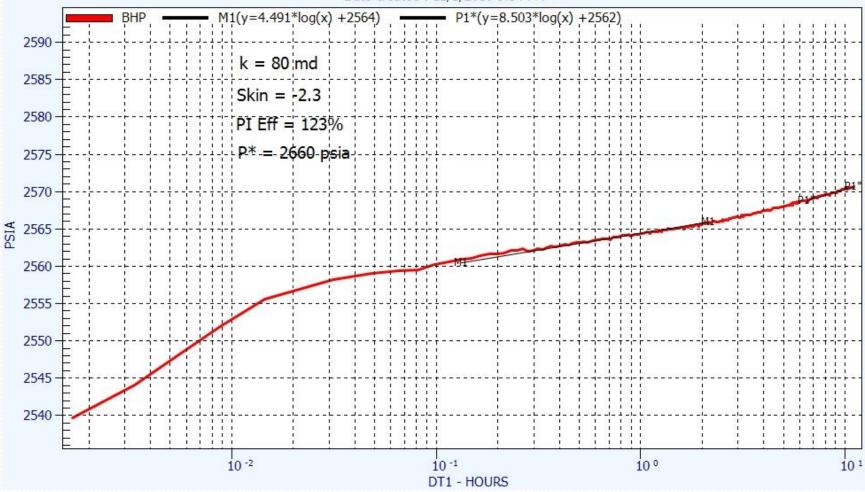
Date created : 11/25/2013 10:54 AM

2-Rate Test (Esp. for Oil)


Oilfield Data Services Inc. Date created : 11/3/2010 9:47 PM

2-Rate Derivative (Oil)

Oilfield Data Services Inc.


Date created : 11/3/2010 10:03 PM

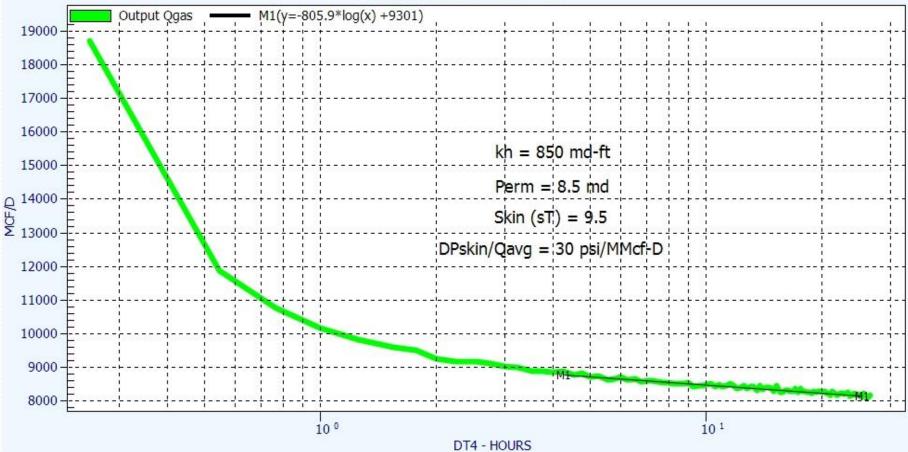
2-Rate Oil Semilog

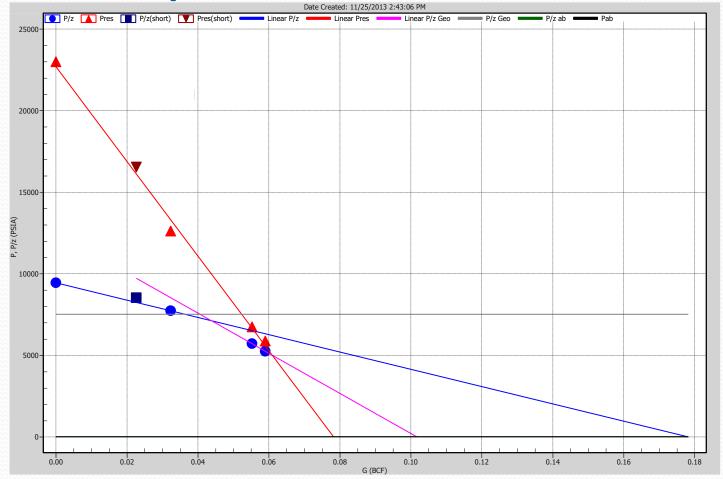
Oilfield Data Services Inc.

Date created : 11/3/2010 9:54 PM

RTA Example - Cartesian

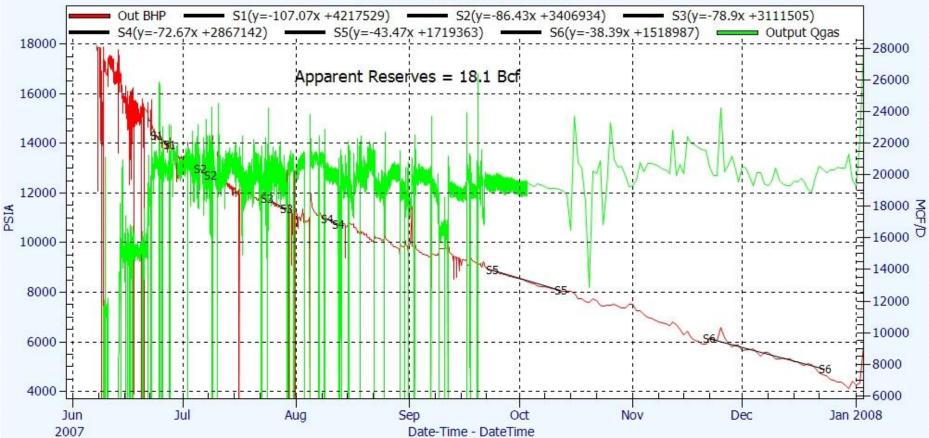
Oilfield Data Services Inc.


Date created : 8/14/2010 6:08 PM


RTA – Semi-log Analysis

Oilfield Data Services Inc.

Date created : 8/14/2010 6:11 PM


P/z Example

DP-DT Decline Evaluation

Oilfield Data Services Inc.

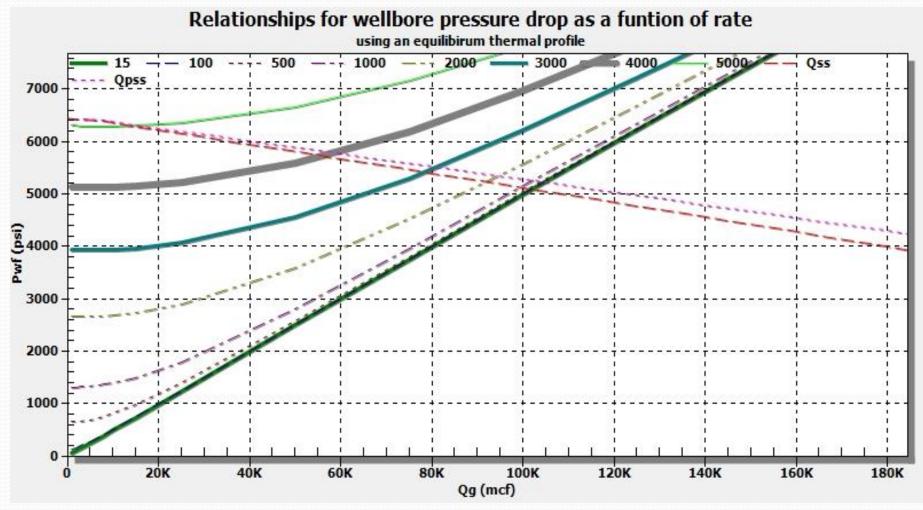
Date created : 1/17/2010 12:39 AM

Inverse Productivity Decline

Oilfield Data Services Inc.

Date created : 1/17/2010 12:30 AM

"Static" Nodal Analysis


- Compares Reservoir Inflow (IPC) with Wellbore Performance (VLP)
 - Allows Prediction of DP to achieve a Rate (vice versa)
 - Allows Prediction of Liquid Loading Scenarios
 - Allows Optimization of Tubular Design
- Problems with Nodal
 - Infinite # of combos of skin & perm calculate the same rate (Can't use nodal to determine skin or perm)
 - User has to pick the right inflow model and right VLP correlation
 - Doesn't handle transient situations well may match your well today, but not next month

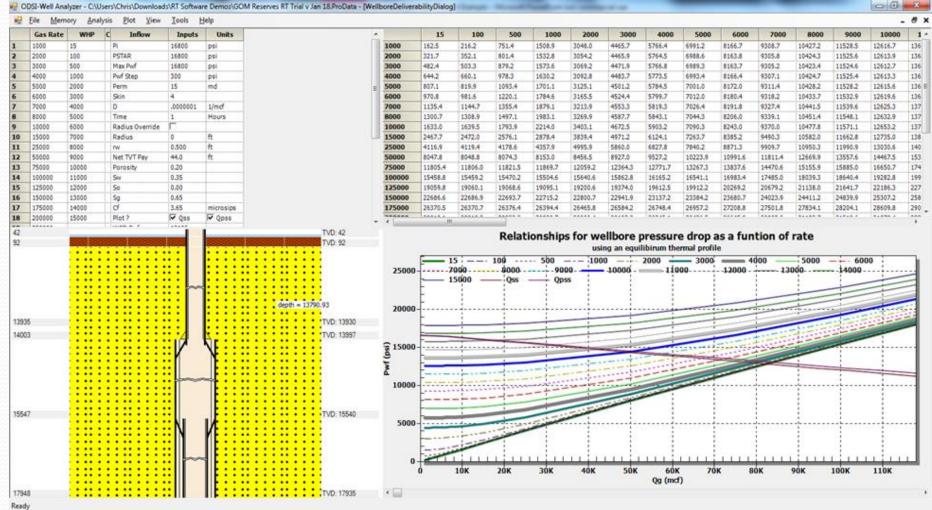
Nodal – IPC + VLP

🚽 File	Memo	ory Analy	sis Plot View	Tools H	Help															_ 8
Gi	as Rate	WHP	C Inflow	Inputs	Units				100	500	1000	2000	3000	4000	5000	I	J	к	L	м
200	00	100	PSTAR	6500	psi			25000	1239.9	1393.3	1794.8	2892.1	4070.1	5230.4	6363.2					_
30		500	Max Pwf	6500	psi			50000	2500.0	2579.0	2812.0	3588.2	4563.2	5602.3	6658.5					
400	00	1000	Pwf Step	100	psi			75000	3759.1	3810.6	3966.8	4530.4	5313.2	6210.0	7163.8		1			
500		2000	Perm	10	md			100000	5000.7	5038.1	5153.0	5583.3	6217.2	6983.2	7830.9					
600		3000	Skin	-1.5				125000	6227.1	6256.1	6345.7	6688.4	7211.7	7867.9	8617.5					
70		4000	D	.0000001	1/mcf			150000	7449.3	7472.8	7545.4	7826.9	8266.8	8833.2	9496.2					
80		5000	Time	24	Hours			175000	8676.9	8696.4	8757.0	8993.7	9369.5	9862.5	10450.8					
10	000		Radius Override	Г				200000	9862.5	9879.3	9931.5	10136.5	10465.2	10901.9	11430.0					
	000		Radius	0	ft			250000	12211.7	12224.7	12265.4	12426.1	12687.2	13039.9	13474.3					
15 25			rw	0.350	ft		-													
50			Net TVT Pay	120.0	ft			Pwf	6400.0	6300.0	6200.0	6100.0	6000.0	5900.0	5800.0	5700.0	5600.0	5500.0	5400.0	5300.0
750			Porosity	0.11				Qss	7294.4	14587.5	21878.7	29167.3	36452.6	43733.7	51009.9	58280.2	65543.6	72799.2	80045.8	87282.
	0000		Sw	0.22				Qpss	8252.4	16504.2	24754.7	33003.2	41248.8	49490.7	57728.0	65959.6	74184.5	82401.6	90609.7	98807.
	5000		So	0.22					6449.9	6399.5	6348.8	6297.9	6246.7	6195.2	6143.4	6091.2	6038.8	5986.1	5933.0	5879.6
	0000			0.78			-	Pavg	1008.1	1004.0	999.9	995.8		987.3	983.1	978.8	974.4	970.0		961.1
	5000		Sg Cf	4.67				r					991.6						965.6	0.027
	0000		Plot ?	4.0/ ▼ Qss	microsips Opss			mu	0.028	0.028	0.028	0.028	0.028	0.027	0.027	0.027	0.027	0.027	0.027	0.681
					I♥ Qpss			В							÷					
250	0000		WCD Pwf	4950				eta	10585.865	10500.499	10414.714	10328.504	10241.863	10154.787	10067.268	9979.300	9890.876	9801.990	9712.633	9622.7
			Calculate				-	<												
pth: 60									15 0ss	<u>+</u> −- 10	0 +		wellbore ing an equ — 1000		ermal profi		ion of ra		5000	
						Depth: 180		7000-	15 Qss		0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
epth: 60 epth: 21						Depth: 180		7000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180		7000 6000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180				<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180		6000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180				<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180		6000 5000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180		6000 5000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~~		Depth: 180		6000		<u>+</u> −- 10	0 +	us	ing an equ	ilibirum th	ermal profi	ile			5000	
						Depth: 180		6000 5000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~~				6000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~~		Depth: 180 Depth: 10458		6000 5000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~~				6000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~				6000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
								6000 5000 (see 4000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
								6000 5000 5000 6 4000 3000 3000 2000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~~				6000 5000 (see 4000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
								6000 5000 5000 6 4000 3000 3000 2000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~				6000 5000 5000 6 4000 3000 3000 2000		<u>+</u> −- 10	0 +	- us	ing an equ	ilibirum th	ermal profi	ile			5000	
				~~				6000 5000 5000 6 4000 3000 3000 2000	055		0	us 500	ing an equ - 1000	libirum th	ermal prof	3000	400			1804
								6000 5000 5000 6 4000 3000 3000 2000	055	<u>+</u> −- 10	0 +	us	ing an equ	libirum th	ermal profi	ile			5000	180K

Ready

#### Nodal VLP-IPC Plot

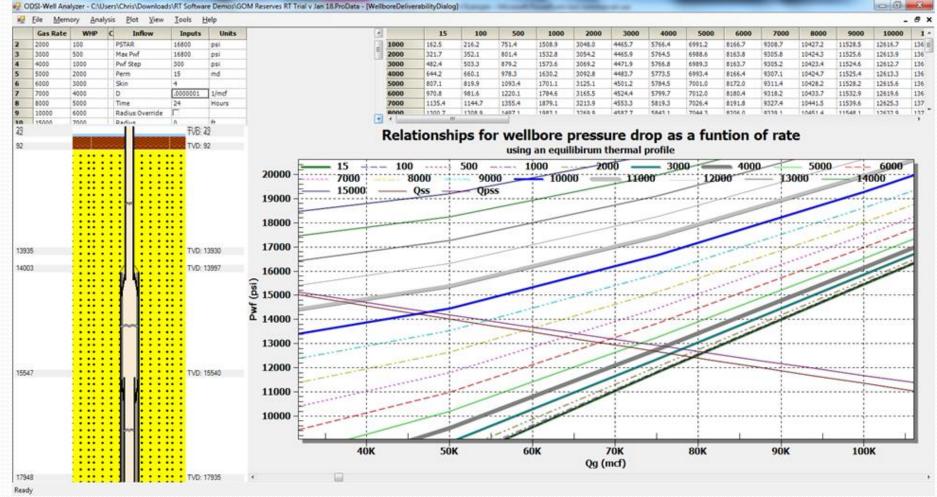



#### **Transient Nodal Analysis Tool**

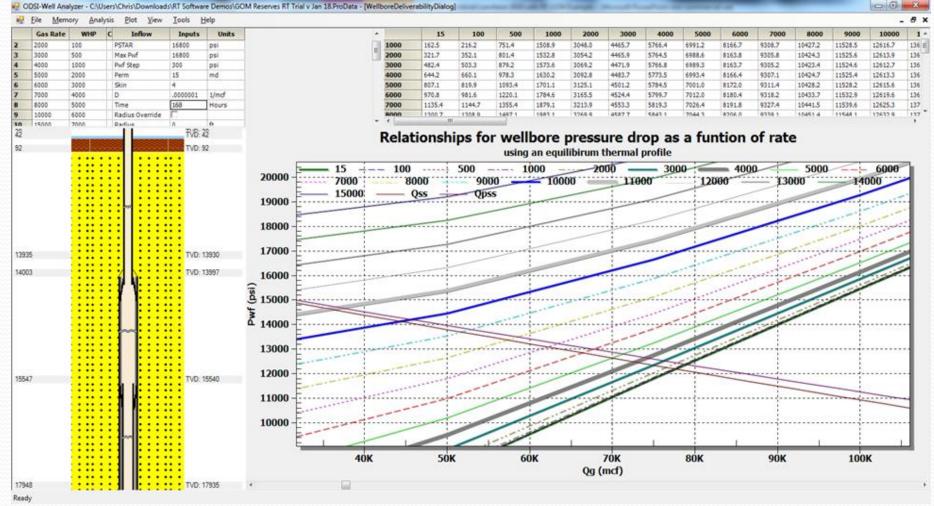
- Keep track of changing produced fluid composition
- Update skin & perm from last valid PTA
- Update P* from last valid PBU
- Keep track of pressure decay during drawdown
  - Adjust Preservoir while producing
  - Use Transient Inflow model when in transient flow
  - Use Appropriate Steady State Inflow model when in SS Flow
- Link Reservoir Simulator to Wellbore Model

# **Transient Nodal Initiation**

- Preservoir, Treservoir
- Skin (s & D) & Perm from Flowback PTA
- Wellbore Radius and Net TVT pay
- Fluid PVT
- Well Configuration/Geometry
- Petro-physical inputs
  - Sw, porosity, formation compressibility
- Forced Fixed Reservoir Volume or Floating Reservoir Volume
- Production Time Since last Valid P*/Pres


#### **Nodal Initiation Run**

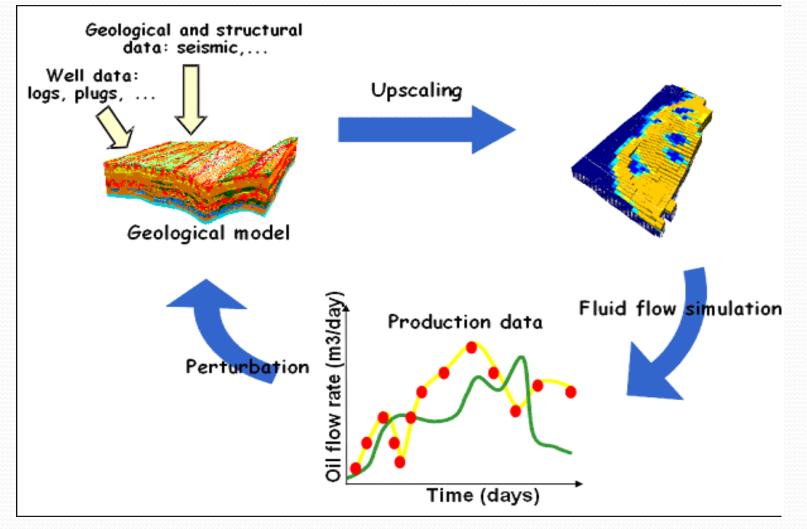



#### Inflow and VLP for Tp = 1 hour

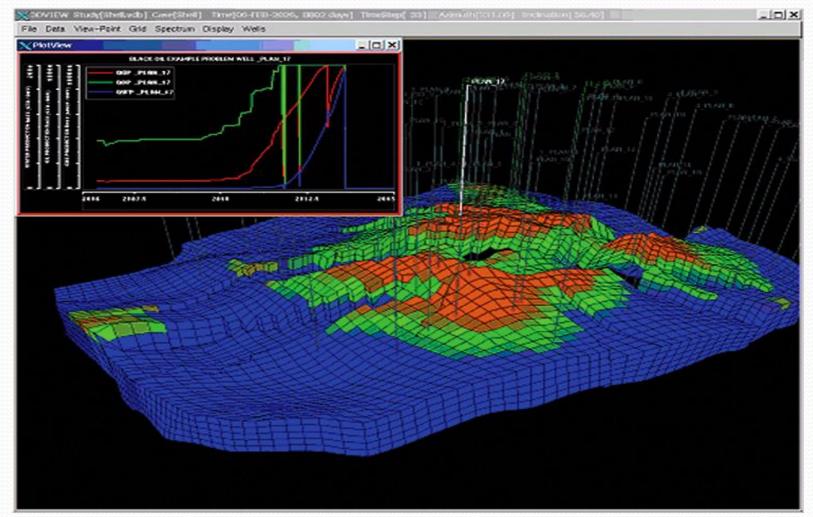


#### Inflow and VLP for Tp = 24 hours




#### Inflow and VLP for Tp = 168 hours

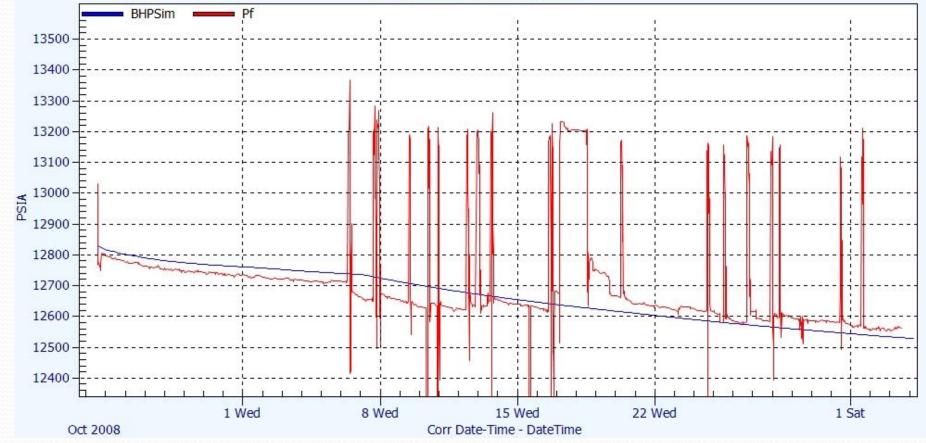



# **Reservoir Simulation**

- Tracks behavior (esp Pressure and Saturation) in the reservoir
- Incorporates Multiple Wells/Multiple Zones
- Matches History and Attempts to Predict Future Performance
- Coupled with a Wellbore Simulator, can do amazing things
- Drawback: It takes a while to run...but they're getting faster

#### Simulation Gist...




#### Simulation: Well Grid



#### Simulator Prediction vs. Actual

Oilfield Data Services Inc.

Date created : 8/15/2010 12:00 AM



#### **Simulator Prediction vs Actual - Semilog**

Oilfield Data Services Inc. Date created : 8/15/2010 12:05 AM



#### Simulation Drawbacks

- Treats system as a tank model
  - OK for High-perm, not so good for low-perm
- Works best in SS or PSS flow (poor for transient)
- Doesn't handle discontinuities very well
- Subject to "gaming"
- Best Case Scenario: The History Match Quality is the BEST the future predictions will be...

# Well Test Planning/Design

- Before you get started, ask:
  - Do you already have the answer?
  - What do you really want to know?
  - Can you use your existing equipment?
  - Do you really need to shut the well in?

#### **Common Well Test Objectives**

- Kh & skin
- Productivity
- Total System Drawdown
- Near Wellbore/Sandface DD
- Reservoir Pressure
- Any changes since the last test?

# OK...so, we're going to test it...

- What's the well doing now? Is it unloading?
- Is it multi-phase in the well bore?
- Is it multi-phase in the reservoir?
- Is it making significant water?
- How are the rates measured? Are they valid?
- What kind of pressure gauge do we need?
- If RIH, where do we set the gauge?

#### Well Test Management Guidelines

- Make sure the well has been flowing on a constant choke for the planned length of the PBU, before the PBU begins
  - If well is shut-in to install DHGs, return the well to the previous choke for 2x the time it was shut-in to set dhgs
- Shut-in the well quickly don't stage the shut-in
- If surface testing, leave the SCSSV open
- Be careful about PBUs in multi-layered reservoirs
- Be careful about phase-resegregation
- Do a drawdown after the build-up

#### Test duration based on objectives

- Skin/perm short
- Boundaries longer
- P* even longer
- If the perm is known or if previous well tests have occurred, the test duration to achieve the objective can be planned in advance

#### What do you need to measure?

- Pressure (WHP, DHGP)
- Temperature (WHT, DHGT)
- Rates: Oil, Gas & Water

Note: Gas rate can be calculated with WHP & DHGP

- Need good PVT data on HC phases
- Need to know Net TVT Pay, Sw, So, Sg and porosity

# **Advanced Topics**

- Water Contacts (well test analysis)
- Water Contacts (Decline analysis)
- Boundaries
- Wavex Energy Mapping

# What are the Objectives of Automated Monitoring/Surveillance?

- Reduce bias in:
  - Well Productivity
  - Apparent Connected Reservoir Volume
  - Is Anything Changing (WB, Comp, Res)?
- Recognize important data/events
  - Reduce time spent hunting for data
- Rapidly perform well/reservoir evaluations
  - Reduce Software Training/Analysis time
- Give Engineers results to check and validate, not spend hours, days and weeks trying to do everything themselves

# How to "Bird-Dog" a Well

#### **Production problem**

- Is it a wellbore problem?
  - Scale/Wax/Asphaltenes, Loading, Parted String
- Is it a completion problem?
  - Skin Accretion, Screen Plugging, Completion Failure
- Is it a reservoir problem?
  - Perm?
  - Reserves?
  - Water Encroachment?
- Is it a combination of two or more of the above?

# FIND THE PRESSURE DROP THAT SHOULDN'T BE THERE!