ODSI's Automated Reservoir and Production Engineering Software

> March 30, 2016 Total - Pau

Chris Fair Oilfield Data Services, Inc. Based on SPE Paper 171512

Outline

- Intro to Oilfield Data Services (ODSI)
- Bias! & INMP
- Surveillance & Visualization
- Critical Issues for Automation
- Instrumentation by Well Type
- Background Physics for ODSI's Wellbore Model
- Well/Reservoir Analysis Techniques/Tools
- Case Studies
- Conclusions

ODSI Consulting Business I

* Data Processing, PVT, Rate and Wellbore Modeling

- * Data QC, Filtering and Condensing
- * Rate & Water Cut Calculations
- * Mid-Completion (Datum) BHP Calculations
- * Well Test & Production Analysis
 - * PTA/RTA Skin, Perm, P*, Boundaries, Volumes
 - Static MBAL and Decline Analysis (<u>In-place</u>, <u>Connected</u> and <u>Mobile</u> **HC Volumes**)
 - * Blind Energy Mapping (don't show us your maps!)
 - * Damage/Invasion Mapping (do show us your logs!)

ODSI Consulting Business II

* Frac Design/Evaluation

- * Building Geo-Mechanical Models
- * Designing the frac to minimize waste
- * Frac Replay Analysis $\leftarrow \rightarrow$ Flowback Analysis
 - * Where did your frac really go?
- * Post-Job review/optimization

* Remote and On-Site Supervision of Complex Operations

- Job Planning
- Frac Jobs
- * Exploration DSTs/TSTs

ODSI's Software - Basics

- * Operate in "Real-Time" or on Historic Data
- * Work Within an Operator's Existing Framework
- * Link to the Database inside the Operator's IT Firewall
- * Honor the Physics and do the Math in the Background
 - * Don't Use Correlations
 - * Don't Force the data to "fit" a model
- * Do the "grunt" work behind the scenes & do it right!
 - * Petro-physics, Well Geometry, PVT & Thermal Modeling
- * Provide Results that Explain a Well's/Reservoir's Performance

PRIMARY GOAL: VALID RATES AND VALID BHP!

Secondary Goal: Remove Bias from the Decision-Making Process

ODSI Software – Automated Results

- * Calculated Rates and/or Water Cuts
- * Calculated Datum (mid-completion) BHP
- * Apparent Oil and/or Water Content in Gas Wells
 - * DP-PBU
 - * Re-Injection Cycle
- * PBU, DD and 2-rate Well Test Interpretation
 - * Skin, Perm, Productivity, Completion Efficiency; P*
- * Static MBAL & Decline Analysis
 - * In-place, Hydraulically Connected & Mobile HC Volumes
 - * Relative Productivity/Relative Inverse Productivity

Bias, Bullies & "It's not my Problem"

Bias in Decisions

- Confirmation/Expectation Bias
 - Decision Already Made
 - Answer Already "given"
- The Inside View
- Risk Compensation
- Gambler's Fallacy
- Ownership/Sunk Cost Bias
- Unintended Consequences Incentives
- Gotta Spend it...(budgets)

Turds in the Pool

- * The "Expert"
- * The "Smartest Guy in the Room"
- * The Information Hoarder
- * The Bully
- * The Grenade Tosser
- * The Hold-out
- * The Amateur Epidemiologist
- * Mister Minutia
- * The Investment Banker

Whose Problem is it?

- * Drilling: We got the hole down it's not my problem
- * Completions: The well flowed it's not my problem
- * Frac'ing: We pumped all the sand INMP
- Facilities: I designed it for what you told me the rate was going to be - INMP
- * Production: Not a wellbore or skin problem see my nodal
- * Reservoir: It's not a perm/Vc issue see my nodal
- Geology/Exp: It HAS to be big! Must be someone else's fault/problem
- Geo-physics: The interpreted log says it's HC bearing the water must be coming from somewhere else

Well...

- Drilling: Fluid Type/Losses can induce damage
- Completions: Fluid Type/Losses, Completion Type and Execution affect performance
- Frac'ing: If you frac out of zone or the proppant gets crushed, your frac may not be any good
- * Facilities: Do the best you can with what you have
- * Production/Reservoir: Find the pressure drop that shouldn't be there!
- * Geology/Exp: Communicate with RE How big is it?
- * Geo-physics: Try digging up the 'raw" *.las data; don't assume that the service co. "interpreted" it correctly

It's Everybody's Problem

- * Understand what happened in the Past
- * Understand what's happing Now
- * Get an idea of what's going to happen in the Future

Need Non-Biased (non-bullying) way to sort things out

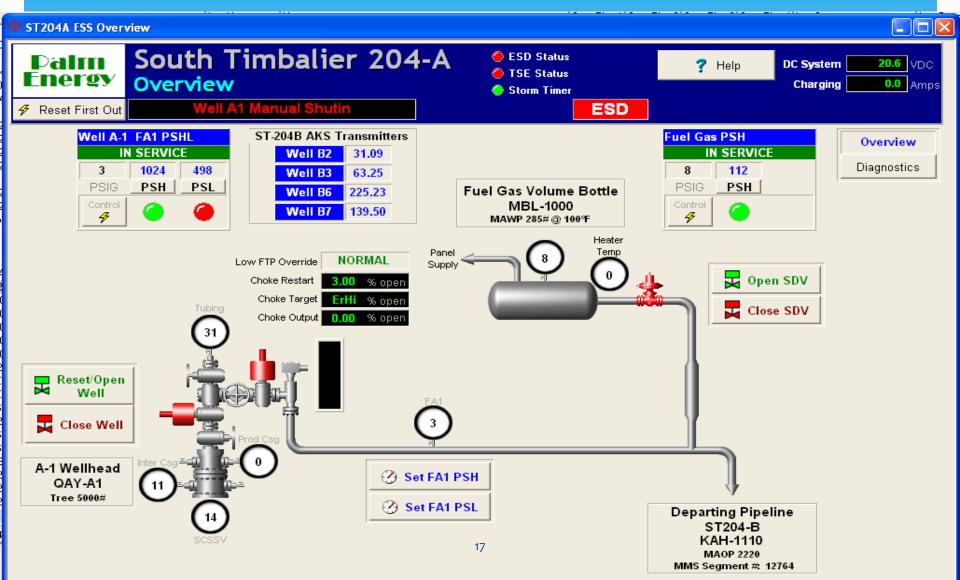
What is Good Surveillance?

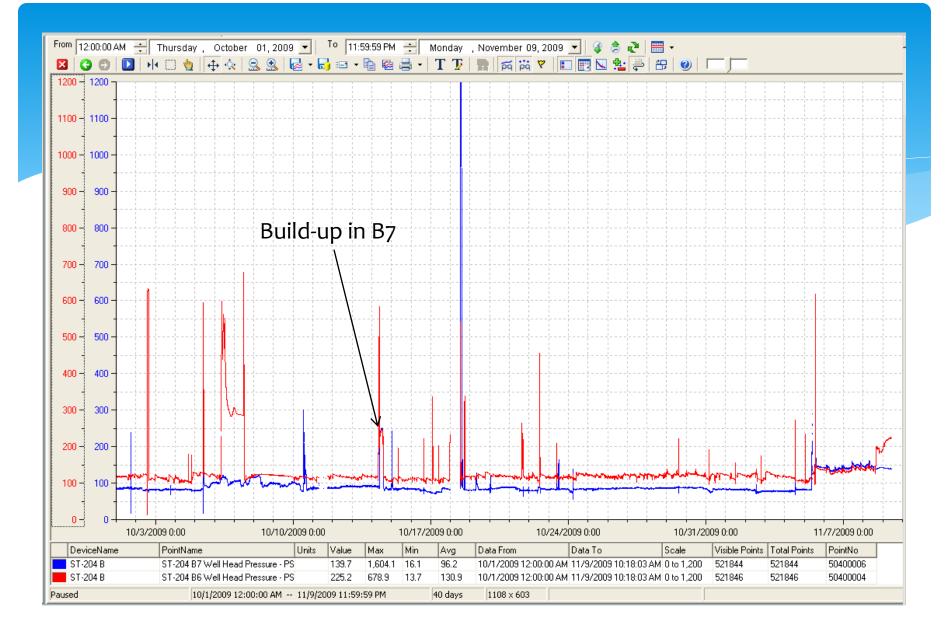
* Always have a handle on:

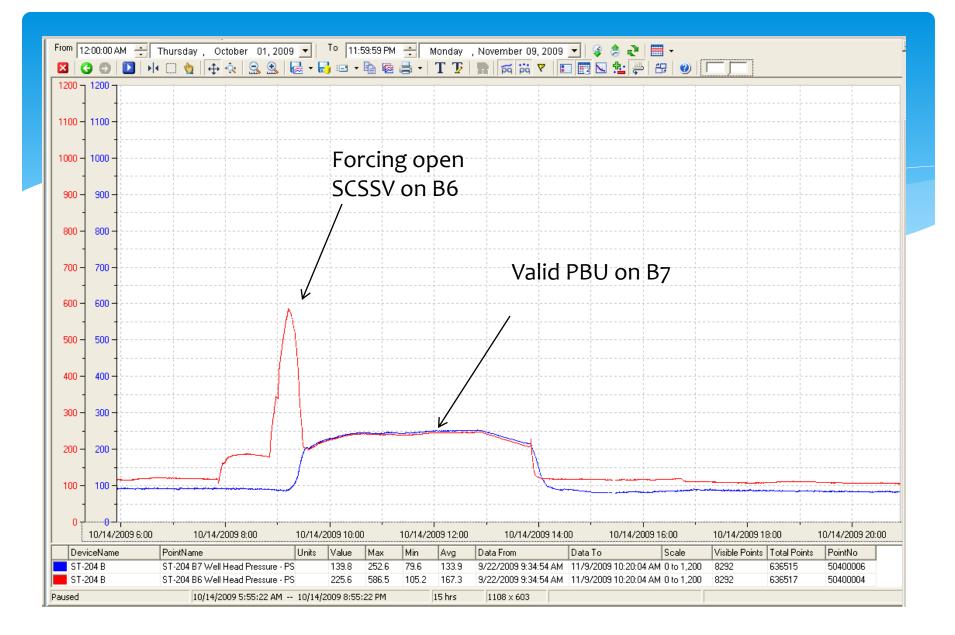
- * How much oil or gas is in the ground
- * How much of it is likely to be recovered
- * What is the current well performance? Can anything be done to improve the performance?
- * Are there problems developing in the well bore?
- * Are there problems developing in the completion?
- * Are there problems developing in the reservoir?
- * Is anything changing?
- * If something happens, what is the current NPV of the asset?

What is Bad Surveillance

- Only accept information about the well/reservoir that fits your or the company's beliefs
- * Change the "static" or geologic model until you get the answer you want
- * Wait until something bad happens:
 - * Call it bad luck & move on
 - * Say it's too late to fix it & move on
 - * Call in a technical expert & move on
 - * Use Nodal Analysis or Simulation to muddy the waters
- * Be reactive... or just do nothing

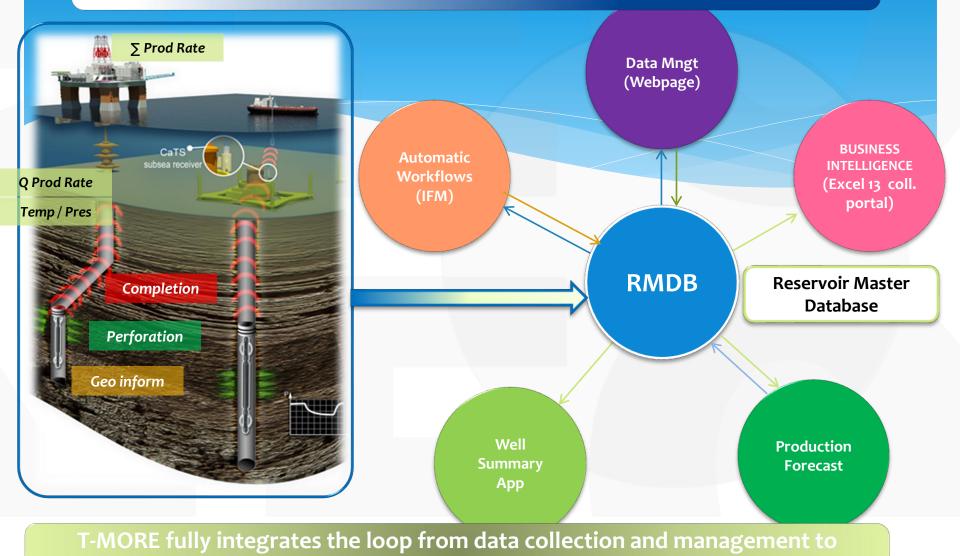

Current Surveillance Programs


- * Some Operators STILL don't even have Scada
- * Some have Scada, but no data visualization
- * Some have Scada & Visualization, but only for some departments
- * Some have alarms, triggers, automatic PBU recognition
- Some have links to internal & external software packages


Drowning in Data?

- Engineers doing surveillance work spend over half their time just looking for data
- Many data systems are still designed as if computer storage/memory were expensive
- Many software packages cannot handle multi-million point data sets
- * Need a common framework that engineers and managers can use and understand & visualize!

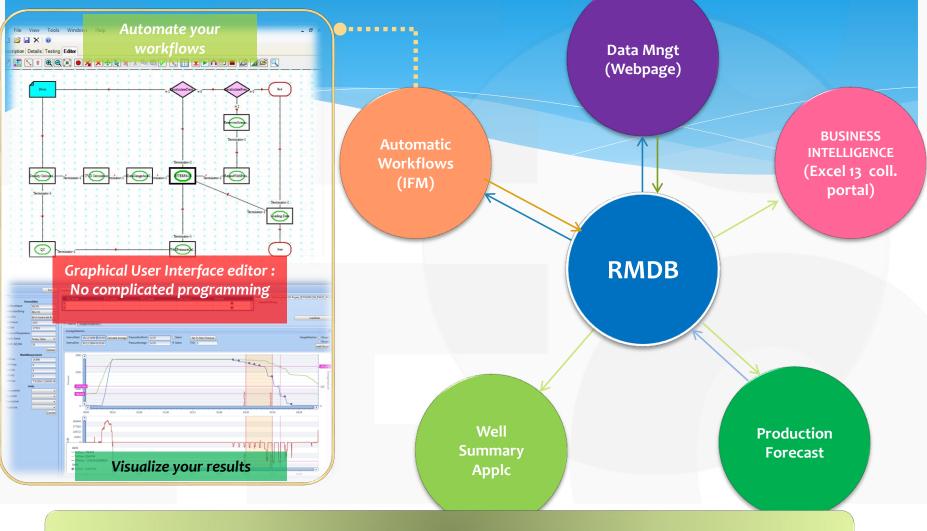
Data Visualization


Common Framework - Basics

- * Easy Access to Data
- Ability to do diagnostic graphs, with annotations
- * Links to Email
- * Process Alarms
- * Ability to Plug & Play with other software packages, not just the Framework's software

This forms the basics for Automated Real-Time Analysis!

Total's Solution: T-MORE


T-MORE → DATABASES AND INTERFACES

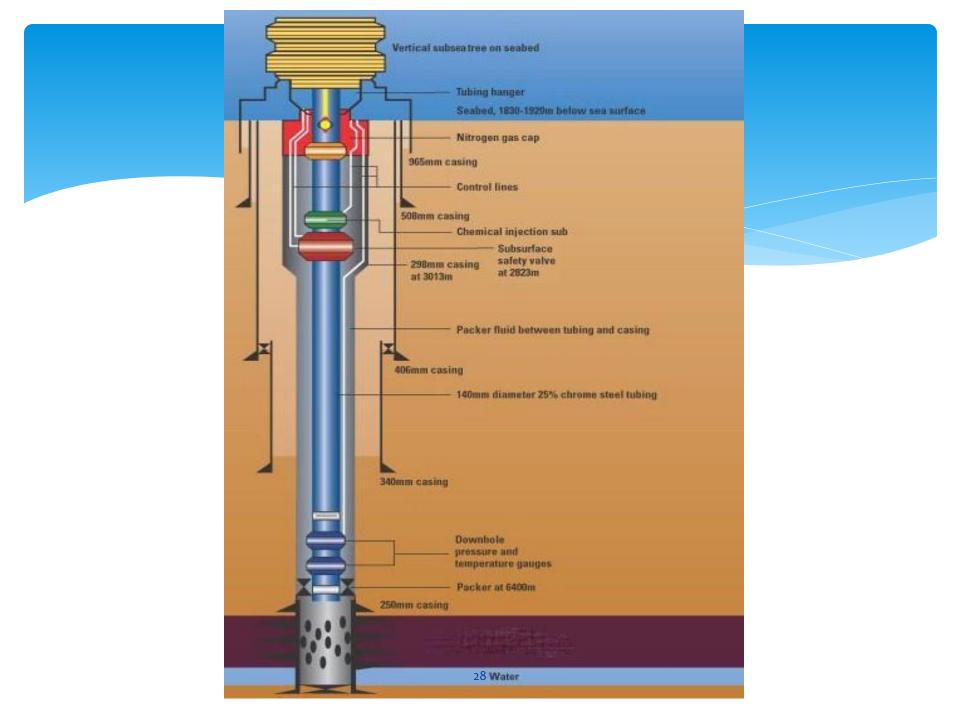
Reservoir management processes

Where Does ODSI Fit in this Set-up?

T-MORE → DATABASES AND INTERFACES

AUTOMATE YOUR RESERVOIR WORKFLOWS

ODSI-PI (or T-MORE) Interface


- ODSI's Windows Service is installed on the PI Server, inside the firewall
- ODSI WS Reads the PI Tags it needs to perform the calculations
- ODSI WS then Writes the Results of the Calculations back to PI
 - Qgas, BHP, Perm, Skin, P*, PI, etc.
- These calculations are then available for IFM to utilize
- Automated Reports (Well Test Analysis, Decline Analysis, Static MBAL) are Written to a Shared Folder within the Network
- Digital Versions of the results are maintained in a *.csv file
- Engineers and T-MORE can access results, reports and summary files through IFM or a dedicated T-MORE/ODSI interface

Critical Issues for Automation

- * Instrumentation Quality & Location
- Data Source, Data Acquisition Frequency, and Data Storage (dead-banding!!!)
- * Well/Completion Type (every well is different)
- * Reservoir "Signal" Rate of Change in Pressure
 - * The higher the kh, the smaller the "signal"
- * Operationally Dependent Items
 - * How is the well shut-in (Staged?)
 - * How is the well brought on production (Stepped?)
 - * How is the well produced (steady, swing?)
- * How is rate "measured" or calculated?

Instrumentation by Well Type

- Possible Instrumentation (Upstream of Facilities)
- * Instrumentation based on well type:
 - * Natural Flow Gas & Gas/Condy
 - Natural Flow Oil
 - * Artificial Lift Oil
 - * Annular Flow Wells (CBM/CSM)
 - Water Injection
 - * Nat Gas injection
 - CO2 injection
 - * Steam Injection

Pressure/Temperature Measurement

What do I really need to measure accurately?

- * Wellhead Pressure
- * Wellhead Temperature (Thermowell)
- * Downhole Pressure
- * Downhole Temperature
- * Distributed Temperature (multi-zone wells)
- * Line Pressure/Temperature
- * Annular Pressures

Rates and Valve/Ck Status

* Flow Rates of Oil, Gas & Water

- * Multiphase Meters, Venturi Meters, Turbine Meters, d/p meters (Daniels), Coriolis meters, Ultrasonic Flowmeter
- * Dedicated Test Separator
- * Meter Prover
- * Virtual Rate Measurement (VRM)... based on what?
- * Other bits
 - * Choke Setting
 - * SCSSV, MV, Control Valves
 - Injection lines

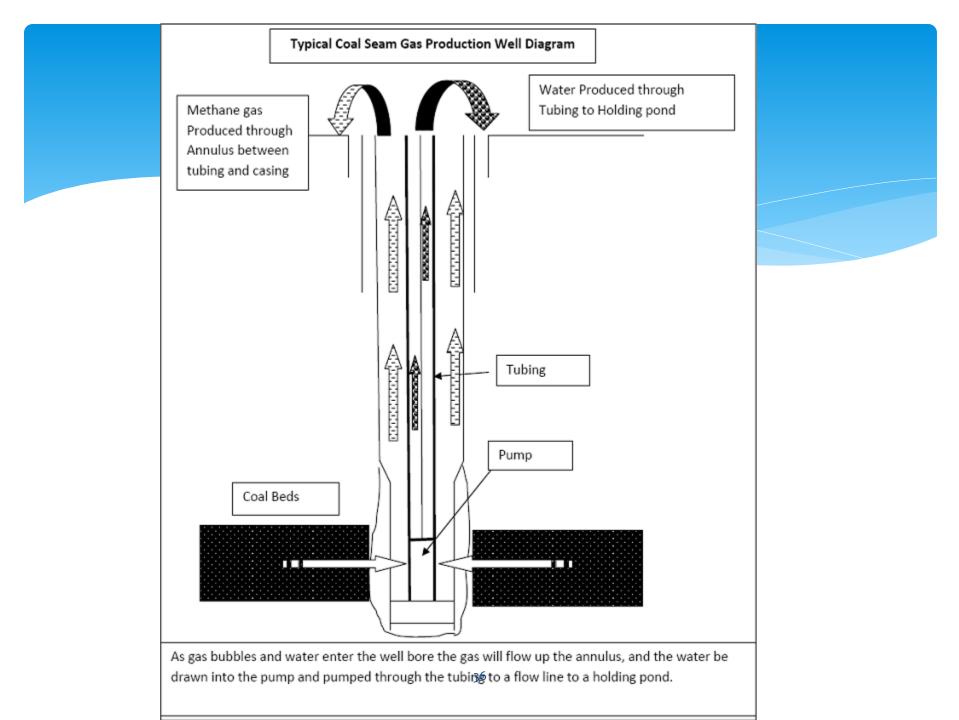
Instrumentation Needs Based on Well Type

Basics: What do you need to evaluate your well/reservoir?

- * Way to get Qgas, Qoil & Qwater
- * Way to get Mid-Completion BHP
- * Temperatures, Choke & Valve Settings are nice too!

Gas & Gas/Condy Wells

- Need at least one pressure and continuously measured Rates...OR
- Two pressures in/on well (can be used to calculate gas rate)
- * Choke Setting
- * Valve Status
- * MPFM?


Note: If well is expected to make significant water or if the free Condensate yield is above 30 bbl/MMcf – dhgs are recommended

Naturally Flowing Oil Wells

- * Tree & DHG (Pressure & Temperature)
 - * Can be used to calculate water cut
- * Mass Flowmeter, Turbine Meter, MPFM, Integrated Tank Level flow indicator
- * Choke Setting
- * Valve Status

Artificial Lift Oil Wells

- Same as natural flow, but DHPG must be below the artificial lift system (and Tree pressure may be irrelevant)
 - Below pump for PCP, ESP or jet pump (in communication with reservoir)
 - Below standing valve for sucker-rod
 - Below mandrel for gas lift (+gas injection pressure)

Annular Flow (CSM)

- * Annulus Pressure/Temperature
- * WHT/WHP
- * Pump torque & rpm
- * DHG (below pump)
- * Liquid Level indicator (avoid running pump dry)
- * Water Rate (tubing) tank level meter
- * Gas Rate (annulus)

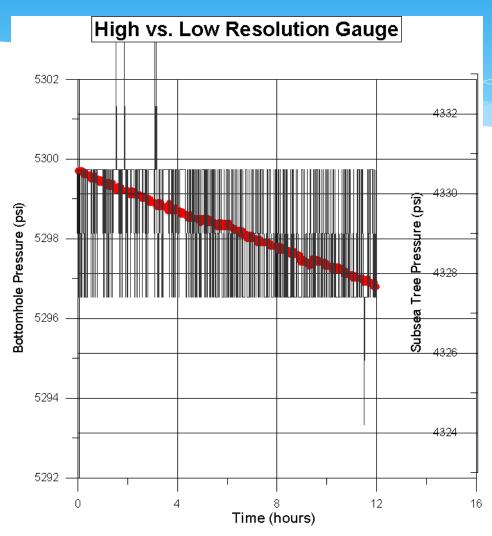
Water Injectors

- * DHG Pressure/Temperature
- Can use WHP if well doesn't go on vacuum during falloff
- * Qwater (turbine meter)
- * Ways to measure/infer water gravity
 - * Capacitance
 - * Salinity
 - * Density

Nat Gas, CO2 & Steam Injectors

- If composition is constant, can get by with just WHP and Qgas-inj and Tinj
- * If composition is variable or well is a recycler, need WHP, WHT, DHGP, DHGT and Qgas (mass flow)
- * Valve Status
- * Choke Status
- * For CO2 Injectors: DHG and Tree gauge required
 - * PVT tuning & rate validation
- * For Steam Injectors: Same as nat gas inj.

Comments on Instrumentation


- * Instrumentation is relatively cheap
 - Price difference between good and crap equipment is small
 - * Cable (TEC) and Rig Time are not
- * Don't drop bits!
 - * Most transmitters are 18-24 bit
 - * Don't lose resolution over a \$30 vs. a \$50 I/O card

* Let the end users spec the equipment!

Data Transfer: Don't Lose Resolution!

- Before it gets to you, Your Data is likely to pass through:
 - * One or two A/D converters
 - * An I/O card on the Control Panel
 - Dead-band filters
 - * Signal filters
 - * Archive filters
- * You can lose sampling resolution (frequency) and instrument resolution at any point along the way

Don't Lose Resolution!

How Do We Make Use of Automated Surveillance?

... may have to change the way we work and assign responsibility

One Last Form of Bias...

Automation Bias!

How to "Bird-Dog" a Well Production problem

- * Is it a wellbore problem?
 - * Scale/Wax/Asphaltenes, Loading, Parted String
- * Is it a completion problem?
 - * Skin Accretion, Screen Plugging, Completion Failure
- * Is it a reservoir problem?
 - * Perm?
 - * Reserves?
 - * Water Encroachment?
- * Is it a combination of two or more of the above?

FIND THE PRESSURE DROP THAT SHOULDN'T BE THERE!

Remember: Every Well is Different!

- * Well Geometry
- Completion type
- * Data Source/Instrumentation
- * Data Frequency & Management
- * How Many Reservoir Layers?
- * Reservoir Signal (how "flat" is the build-up?)
- * Wellbore Lift Mechanism
- * Reservoir Drive Mechanism
- * How is the Well Operated?

Each Well's Data Acquisition Strategy Needs to Consider All of These Items

Reservoir & Production Engineering Analysis/Evaluation Tools

What they are and what they tell you

Analysis Types and Their Objectives

- * PTA (Pressure Transient Analysis)
 - * Skin, Perm, Deliverability, Communication, Productivity, Reservoir Boundaries, Reserves, Reservoir Pressure (P*)
- * RTA (Rate Transient Analysis)
 - * Same as PTA, but with less reliability on boundaries
- * P/z Plots (gas) & Static MBAL Plots (oil)
 - * Oil and/or Gas in Place
- * Decline Analysis: Flowing BHP or IP vs Time
 - * Apparent HC Volumes Running MBAL/EBAL
- * Nodal Analysis: Interaction of WB/Comp/Res
 - * Changes in well performance; short-term rate predictions
- Reservoir Simulation: Cell/Gridblock disposition of Saturations, Pressures (Energy)
 - * Field Optimization; longer-term rate/withdrawal predictions

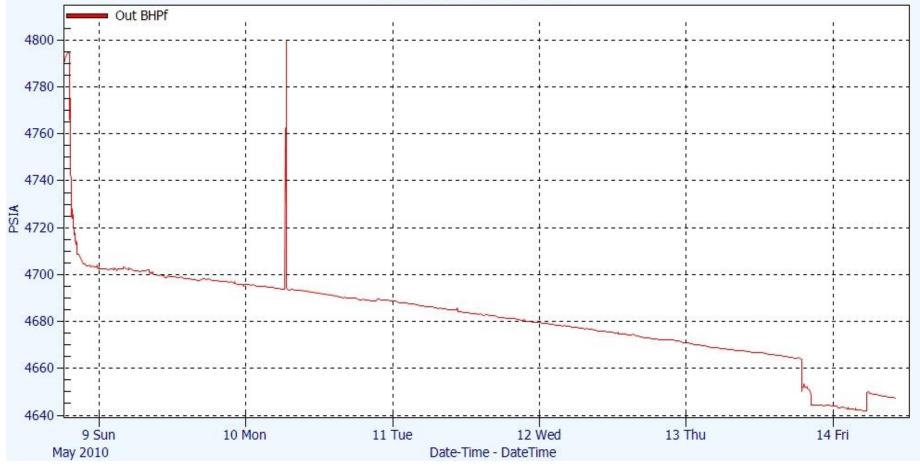
Analysis Type Examples

- * Build-up PTA Derivative
- * Drawdown PTA Semilog
- * Horner P*
- * Proper RTA (Rate Transient Analysis)
- * MBAL/EBAL "bookends"
- * P/z (gas) or Static MBAL (oil)
- * Conventional Decline Analysis (Running MBAL)
- * TTA/IPA (Running EBAL)
- * NODAL ANALYSIS
- * Simulated Rates/Pressure vs. Actual

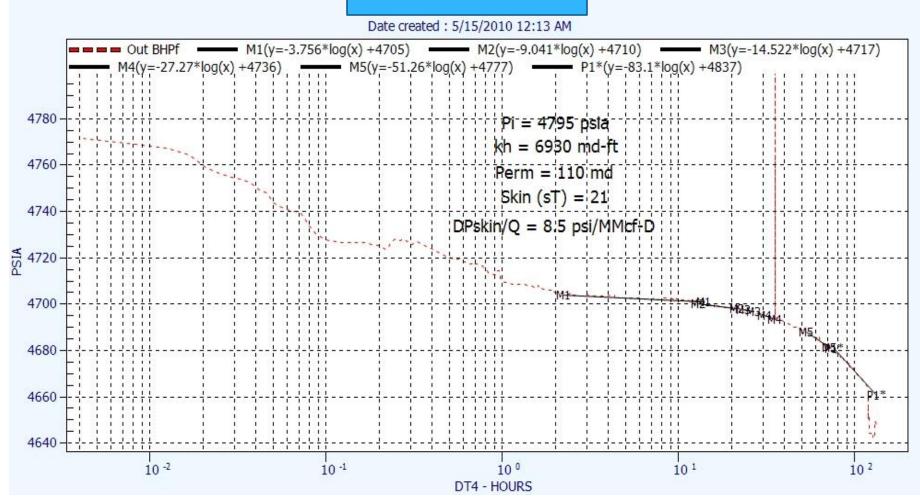
Analysis/Evaluation Tools: PTA

- Build-up: After flowing the well for a while, shut it in and observe the pressure response
 - * If Long Enough, Valid P*
- Drawdown: After shutting in the well for a while, flow it on a constant choke and observe the pressure and rate response
- 2-rate: Change the rate enough to create a new transient; observe P & Q
- * Multi-rate: Change the rates and compare DP vs Q
- Communication: Shut-in a well and see if a neighboring well causes the Pressure to drop

Build-up PTA

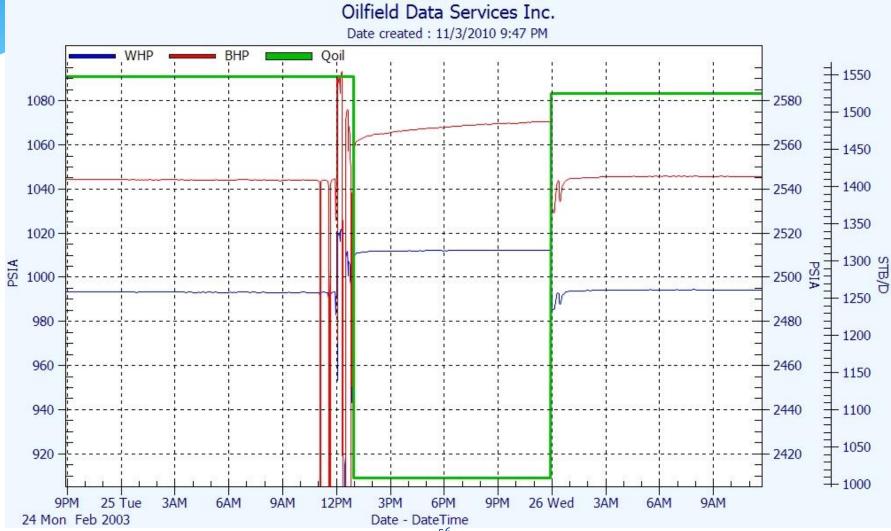


Build-up Derivative Analysis

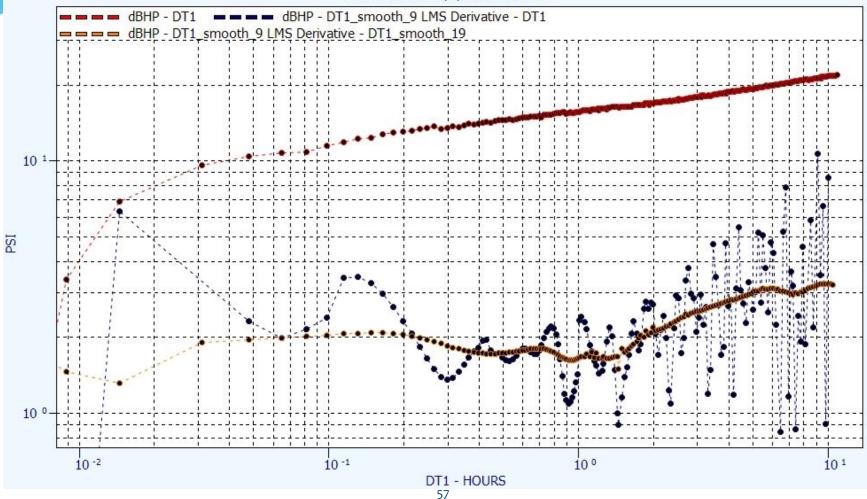


Drawdown - PTA

Date created : 8/14/2010 5:03 PM


Drawdown PTA - Semilog Analysis

Horner Plot – P* Determination


2-Rate Test (Esp. for Oil)

2-Rate Derivative (Oil)

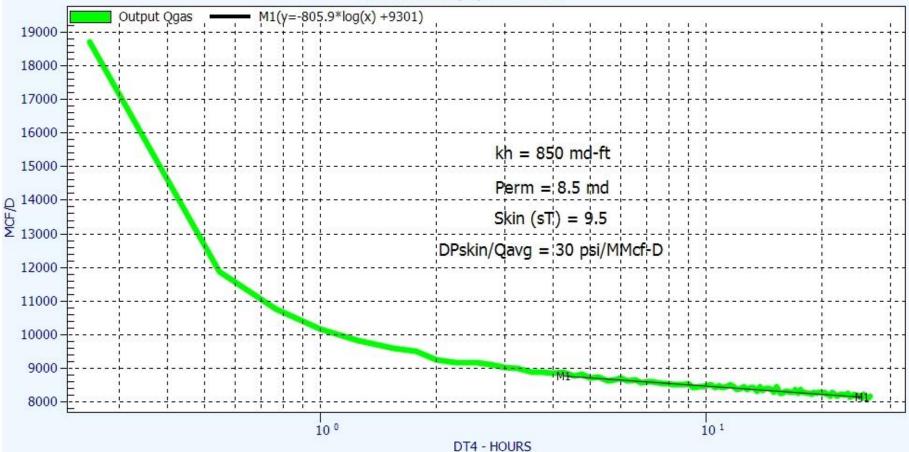
Oilfield Data Services Inc.


Date created : 11/3/2010 10:03 PM

2-Rate Oil Semilog

Oilfield Data Services Inc.

Date created : 11/3/2010 9:54 PM



RTA Example - Cartesian

RTA – Semi-log Analysis

Date created : 8/14/2010 6:11 PM

Two Simple Bookends: Applied to Static and Dynamic MBAL/EBAL

- * Expansion Drive Only (Compressibility Volume)
 * Vc
- * Infinite Water Drive Only (Pushed Volume)
 - * Vsld

P/z & Static MBAL

- * Static MBAL for Oil Conventional & SLD
 - * Conventional: N = Np * Boi/(Bo|Np Boi)
 - * SLD: N = Np*Pi/(Pi-P|Np)
- * Static MBAL for Gas Conventional & SLD
 - * Conventional: G = Gp*Bgi/(Bg|Gp Bgi)
 - * SLD: G = Gp*Pi/(Pi-P|Gp)
- * P/z for Gas: Plot P* vs Gp and P*/z vs Gp
 - * SLD In-place = Intercept of P* slope at 15 psia
 - * P*/z In-place = Intercept of P*/z slope at 15 psia

Where Bo|Np or Bg|Gp are FVFs at current Preservoir coincident with the produced hydrocarbon volume and P|Np or P|Gp are the current reservoir pressure

Conventional & TTA Decline

- * Conventional Decline Relates to Hydraulically Connected Volume
 - * DP-DT Slope is the Conventional decline slope
- * TTA Decline Relates to Mobile Volume
 - * The TTA function is simply the relative inverse productivity: (*Pinitial-Pwf*)/Qspot
 - * Slope is the TTA-slope

Conventional Decline Analysis

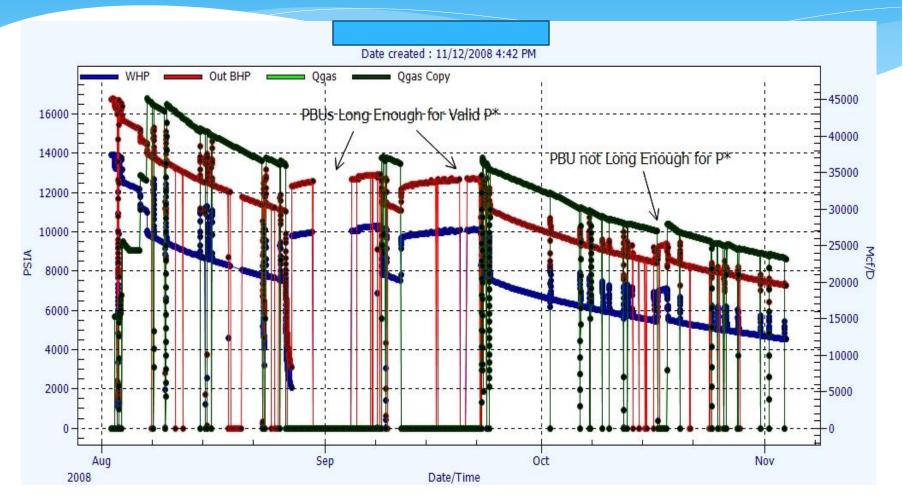
* ConVc = Qavg/(DP/DT-slope*Ct)

* ConV_{SLD} = Qavg*Preservoir/(DP/DT-slope)

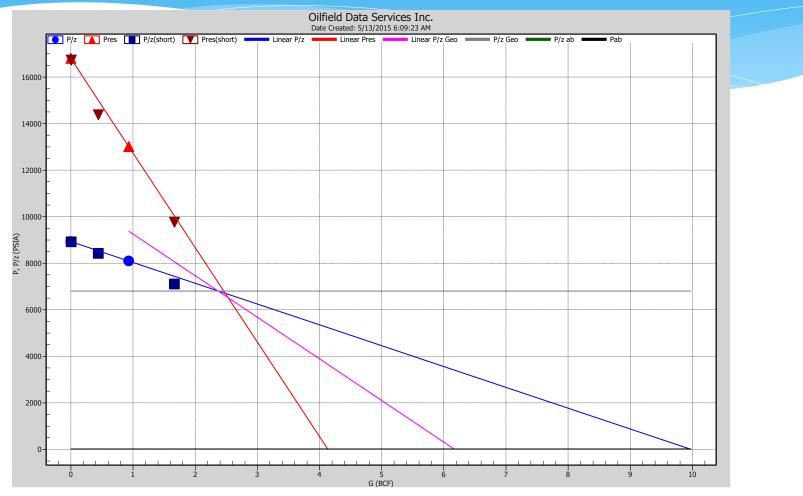
 V_{SLD} and Vc = volume in units compatible with Qavg & DT, Qavg [=] average flow rate over the period where the DP/DT-slope is selected, DP/DT-slope is the decline in pressure per unit time [=] psi/day, and Ct is total system compressibility (1/psi).

TTA Decline Analysis

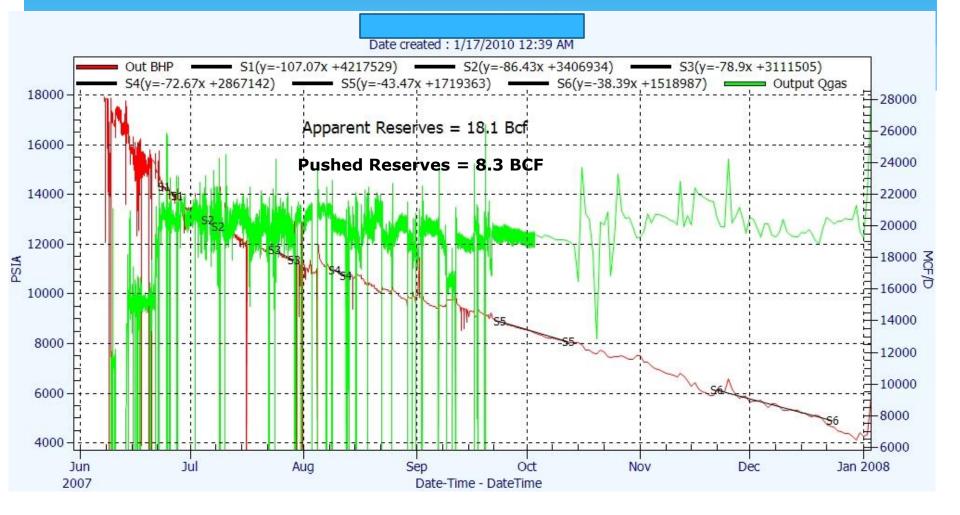
- * TTA|Vc = 1/(TTA-Slope*Ct)
- * TTA V_{SLD} = Preservoir/TTA-Slope

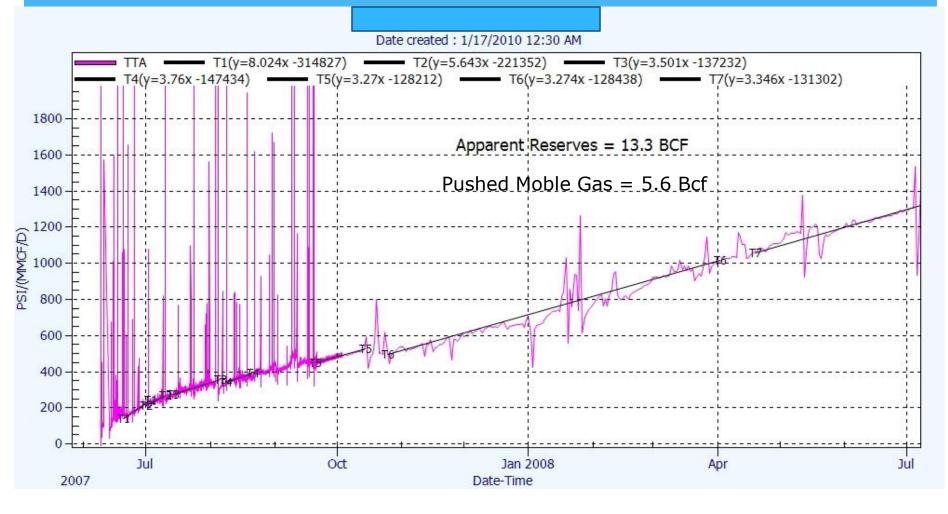

TTA-Slope has units consistent with the stock-tank or standard condition rate units and pressures

Six Values:


- * Static MBAL (expansion) In-place Energy
- * Static MBAL (SLD) Pushed In-Place Energy
- * Conventional Vc Hydraulically Connected Energy
- * Conventional SLD Pushed Hyd. Conn. NRG
- * TTA Vc Mobile Energy
- * TTA SLD Pushed Mobile Energy

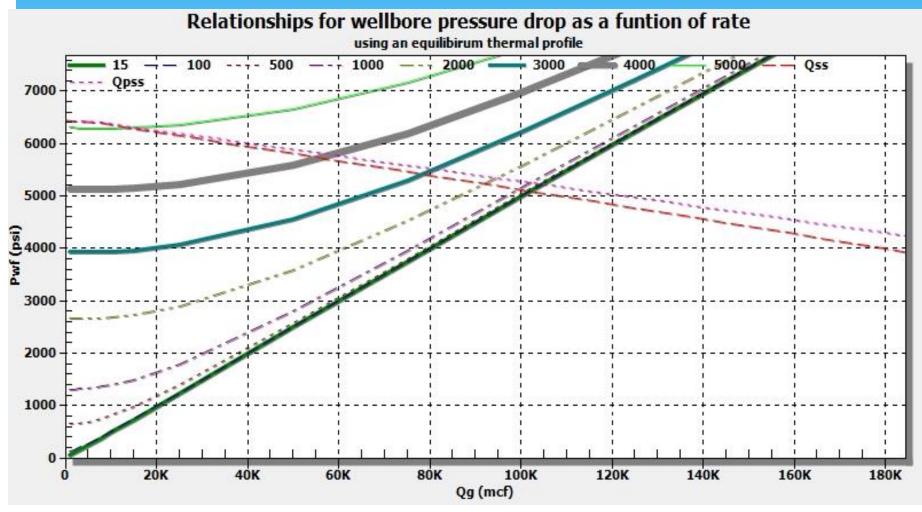
Changes in these values Mean Something!!!


Production History for P/z


P/z Example

Conventional Decline Evaluation

TTA "Decline" Analysis


"Static" Nodal Analysis

- Compares Reservoir Inflow (IPC) with Wellbore Performance (VLP)
 - * Allows Prediction of DP to achieve a Rate (vice versa)
 - * Allows Prediction of Liquid Loading Scenarios
 - * Allows Optimization of Tubular Design
- * Problems with Nodal
 - Infinite # of combos of skin & perm calculate the same rate (Can't use nodal to determine skin or perm)
 - User has to pick the right inflow model and right VLP correlation
 - Doesn't handle transient situations well may match your well today, but not next month

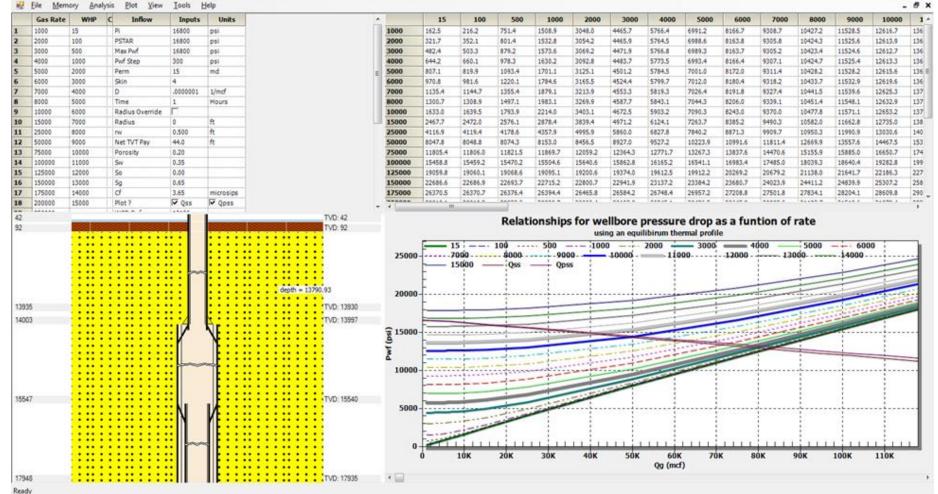
Nodal – IPC + VLP

	File Men		lysis Plot View		0\nodal out2.ProData - [WellboreDe Heln	aiverabilityDialogj												- 8
	Gas Rate	-	C Inflow	Inputs	Units	A	100	500	1000	2000	3000	4000	5000	I	J	к	L	M
_	2000	100	PSTAR	6500	psi	25000	1239.9	1393.3	1794.8	2892.1	4070.1	5230.4	6363.2					
-	3000	500	Max Pwf	6500	psi	50000	2500.0	2579.0	2812.0	3588.2	4563.2	5602.3	6658.5					
-	4000	1000	Pwf Step	100	psi	75000	3759.1	3810.6	3966.8	4530.4	5313.2	6210.0	7163.8					
-	5000	2000	Perm	10	md	100000	5000.7	5038.1	5153.0	5583.3	6217.2	6983.2	7830.9					
_	6000	3000	Skin	-1.5		125000	6227.1	6256.1	6345.7	6688.4	7211.7	7867.9	8617.5					
	7000	4000	D	.0000001	1/mcf	- 150000	7449.3	7472.8	7545.4	7826.9	8266.8	8833.2	9496.2					
	8000	5000	Time	24	Hours	175000	8676.9	8696.4	8757.0	8993.7	9369.5	9862.5	10450.8					
-	10000		Radius Override	F		200000	9862.5	9879.3	9931.5	10136.5	10465.2	10901.9	11430.0					
0	15000		Radius	0	ft	250000	12211.7	12224.7	12265.4	12426.1	12687.2	13039.9	13474.3					
1	25000		rw	0.350	ft	250000	12211./	1222-1.7	12205.1	1212011	12007.2	15055.5	1047410					
2	50000		Net TVT Pay	120.0	ft	Pwf	6400.0	6300.0	6200.0	6100.0	6000.0	5900.0	5800.0	5700.0	5600.0	5500.0	5400.0	5300.0
2	75000		Porosity	0.11		Qss	7294.4	14587.5	21878.7	29167.3	36452.6	43733.7	51009.9	58280.2	65543.6	72799.2	80045.8	87282.3
3 4	100000	1	Sw	0.11			8252.4	14587.5	24754.7	33003.2	41248.8	49490.7	57728.0	65959.6	74184.5	82401.6	90609.7	98807.5
.4 .5	125000		So	0.22		Qpss	6449.9	16504.2 6399.5	6348.8	6297.9	41248.8 6246.7	49490.7 6195.2	57728.0 6143.4	6091.2	6038.8	5986.1	5933.0	98807.5 5879.6
16	125000		Sg	0.00		Pavg	1008.1	1004.0			991.6	987.3			974.4	970.0		
6 7	150000		Sg Cf	0.78 4.67	microsips	-	0.028	1004.0	999.9 0.028	995.8 0.028	991.6 0.028	987.3	983.1 0.027	978.8 0.027	9/4.4	970.0	965.6 0.027	961.1 0.027
						mu												
8	200000		Plot ?	Qss	✓ Qpss	В	0.642	0.645	0.648	0.652	0.655	0.658	0.662	0.665	0.669	0.673	0.677	0.681
9	250000		WCD Pwf Calculate	4950		eta ₹ ∢	10585.865	10500.499	10414.714	10328.504	10241.863	10154.787	10067.268	9979.300	9890.876	9801.990	9712.633	9622.79
Depti	h: 60 h: 210				Depth: 18	[15 Qss	10		us		e pressur ilibirum th 20			tion of ra		5000	
20 Depti					Depth: 18	[10	0	us	ing an equ	ilibirum th	ermal prof	ile			5000	
Dept					Depth: 18	0 7000 - 6000 -		10	0	us	ing an equ	ilibirum th	ermal prof	ile			5000	
Dept					Depth: 18	0 7000 - 6000 - 5000 - (10 4000 - 2000 -		10	0	us	ing an equ	ilibirum th	ermal prof	ile			5000	
Deptl						50 7000 - 6000 - 5000 - 5000 - 3000 - 3000 - 2000 -		10	0	us	ing an equ	ilibirum th	ermal prof	ile			5000	
Dept						50 7000 - 6000 - 5000 - 5000 - 2 4000 - 2 4000 - 2 4000 - 2 4000 -	0,955	10	0	us	ing an equ	nilibirum th	ermal prof	ile			5000	180K

Nodal VLP-IPC Plot

Transient Nodal Analysis Tool

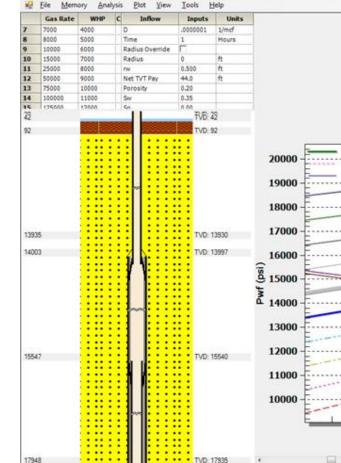
- Keep track of changing produced fluid composition
- * Update skin & perm from last valid PTA
- * Update P* from last valid PBU
- * Keep track of pressure decay during drawdown
 - * Adjust Preservoir while producing
 - * Use Transient Inflow model when in transient flow
 - Use Appropriate Steady State Inflow model when in SS Flow
- * Link Reservoir Simulator to Wellbore Model


Transient Nodal Initiation

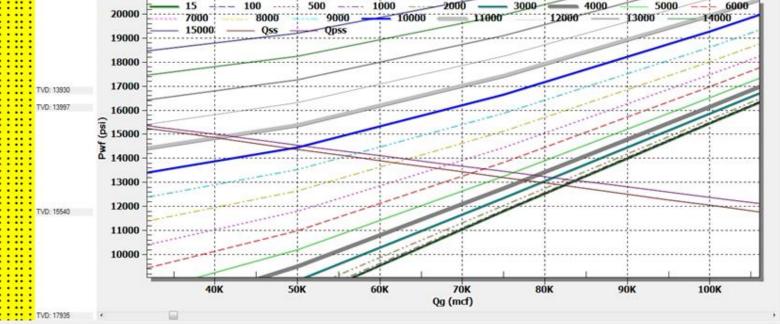
- * Preservoir, Treservoir
- * Skin (s & D) & Perm from Flowback PTA
- * Wellbore Radius and Net TVT pay
- * Fluid PVT
- * Well Configuration/Geometry
- Petro-physical inputs
 - * Sw, porosity, formation compressibility
- Forced Fixed Reservoir Volume or Floating Reservoir Volume
- * Production Time Since last Valid P*/Pres

Nodal Initiation Run

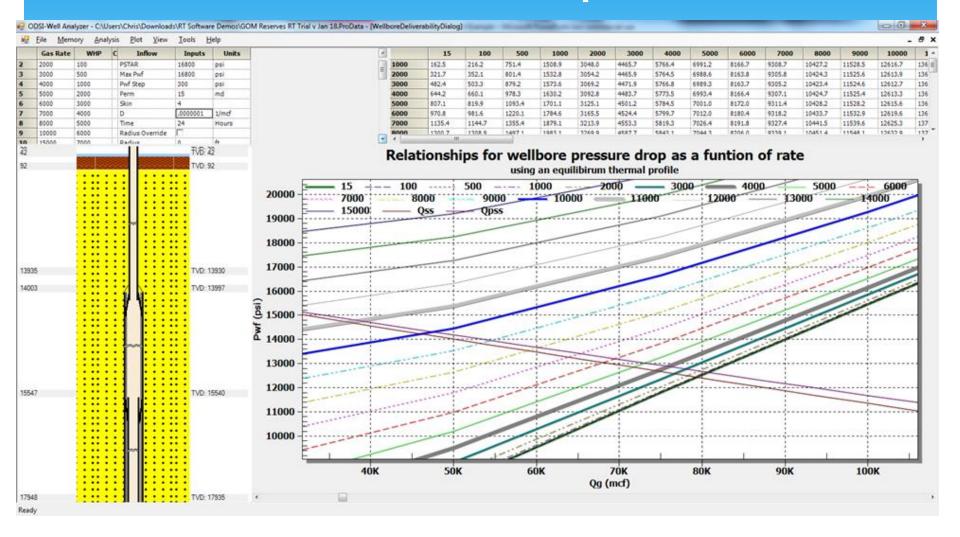
no obsi-Well Analyzer - C./Users/Chris/Downloads/RT Software Demos/GOM Reserves RT Trial v Jan 18 ProData - [WellboreDeliverabilityDialog]


0 0 ×

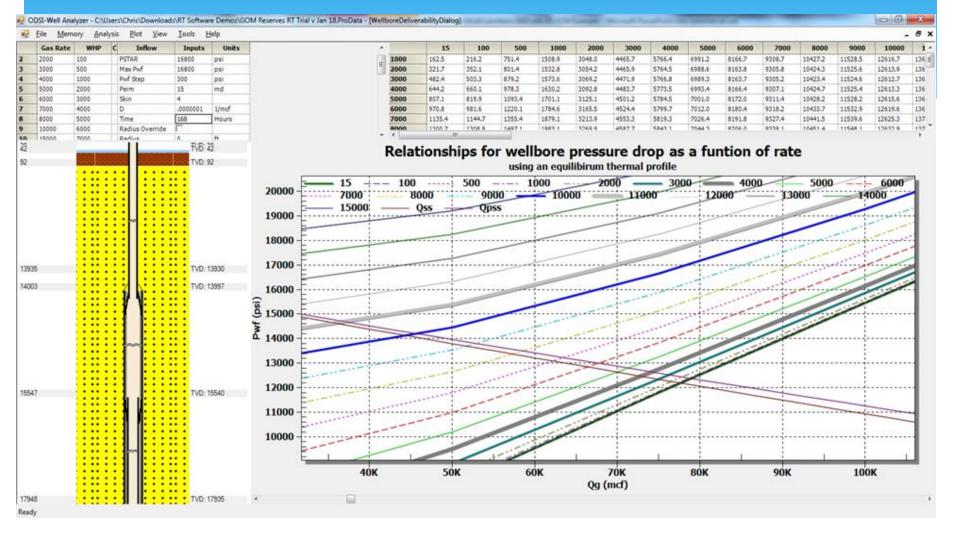
Inflow and VLP for Tp = 1 hour


n ODSI-Well Analyzer - C/Users/Chris/Downloads/RT Software Demos/GOM Reserves RT Trial v Jan 18 ProData - [WellboreDeliverabilityDialog]

0 8

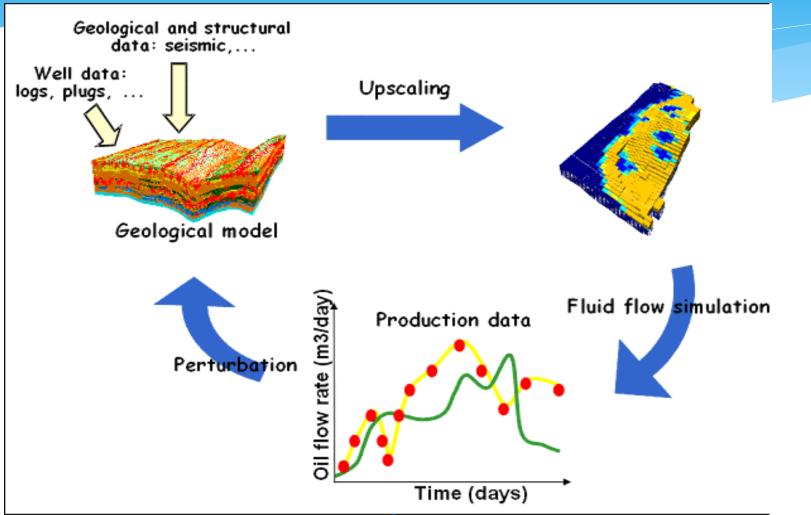

_															-
· ·		15	100	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	1.4
	1000	162.5	216.2	751.4	1508.9	3048.0	4465.7	5766.4	6991.2	8166.7	9308.7	10427.2	11528.5	12616.7	136 1
	2000	321.7	352.1	801.4	1532.8	3054.2	4465.9	\$764.5	6988.6	8163.8	9305.8	10424.3	11525.6	12613.9	136
	3000	482.4	\$03.3	879.2	1573.6	3069.2	4471.9	\$766.8	6989.3	8163.7	9305.2	10423.4	11524.6	12612.7	136
	4000	644.2	660.1	978.3	1630.2	3092.8	4483.7	5773.5	6993.4	8166.4	9307.1	10424.7	11525,4	12613.3	136
	5000	807.1	819.9	1093.4	1701.1	3125.1	4501.2	5784.5	7001.0	8172.0	9311.4	10428.2	11528.2	12615.6	136
	6000	970.8	981.5	1220.1	1784.6	3165.5	4524.4	5799.7	7012.0	B180.4	9318.2	10433.7	11532.9	12619.6	136
	7000	1135.4	1144.7	1355.4	1879.1	3213.9	4553.3	5819.3	7026.4	8191.8	9327.4	10441.5	11539.6	12625.3	137
	8000	1300.7	1308.9	1407 1	1981 1	1760 0	45,87 7	68411	7044 3	8706.0	0110 1	10451.4	11548 1	12632.9	117

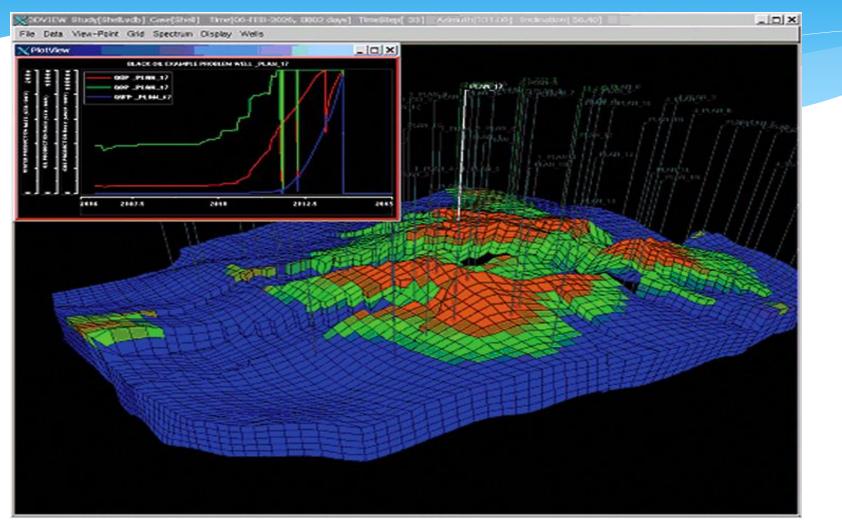
Relationships for wellbore pressure drop as a funtion of rate using an equilibirum thermal profile



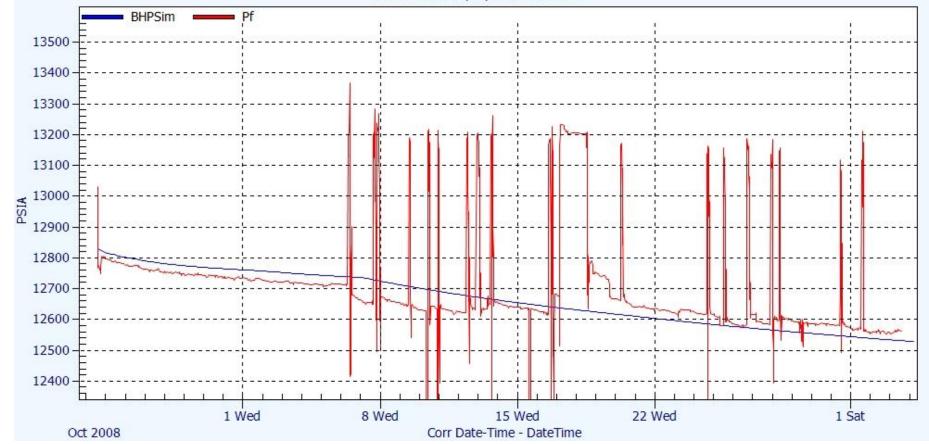
Ready

Inflow and VLP for Tp = 24 hours

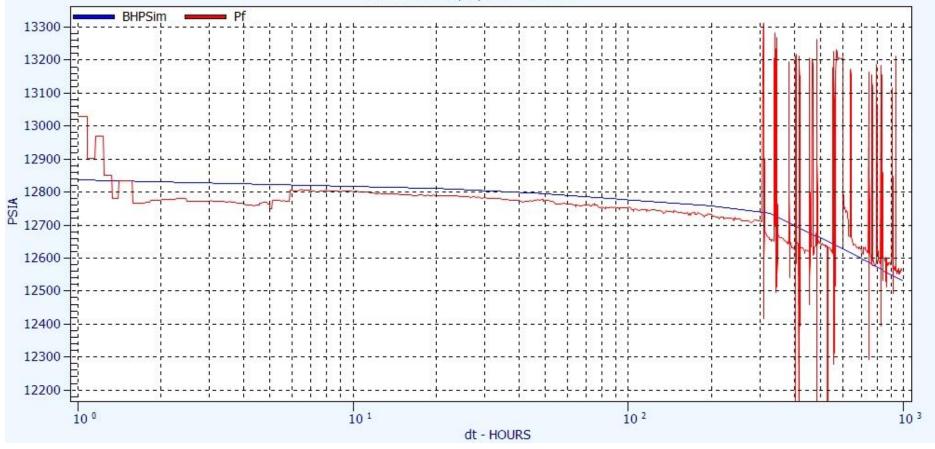

Inflow and VLP for Tp = 168 hours


Reservoir Simulation

- Tracks behavior (esp Pressure and Saturation) in the reservoir
- * Incorporates Multiple Wells/Multiple Zones
- Matches History and Attempts to Predict Future Performance
- * Coupled with a Wellbore Simulator, can do amazing things
- Drawback: It takes a while to run... but they're getting faster


Simulation Gist...

Simulation: Well Grid


Simulator Prediction vs Actual

Date created : 8/15/2010 12:00 AM

Simulator Prediction vs Actual -Semilog

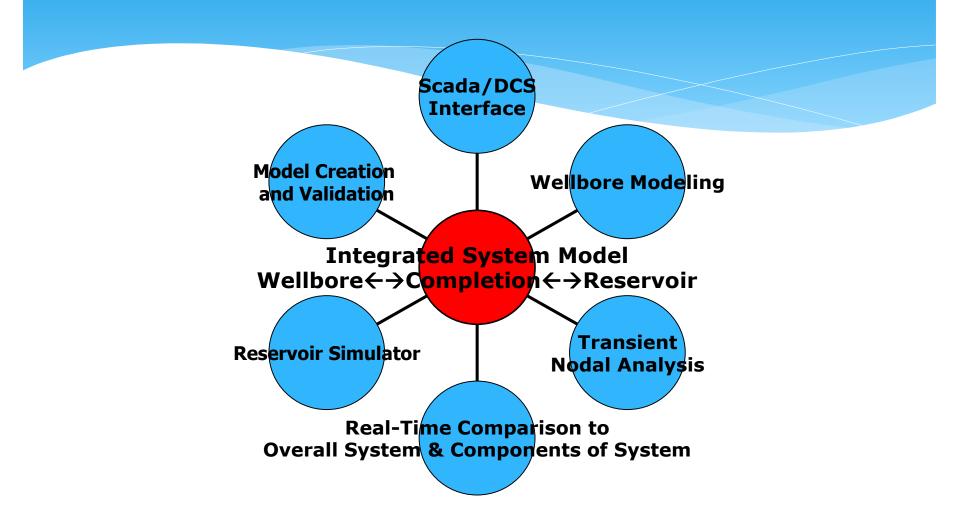
Date created : 8/15/2010 12:05 AM

Simulation Drawbacks

- Treats system as a tank model
 - * OK for High-perm, not so good for low-perm
- * Works best in SS or PSS flow (poor for transient)
- * Doesn't handle discontinuities very well
- * Subject to "gaming"
- * Best Case Scenario: The History Match Quality is the BEST the future predictions will be...

Components of a Real-Time Well Evaluation Package

Take all the bits and Bolt them together

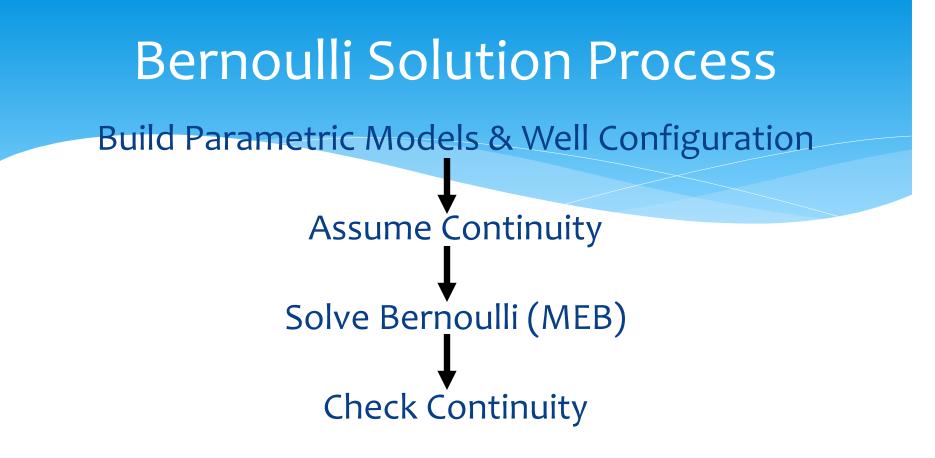

What Do We Already Have? (Batch Process)

- * Hopefully...adequate data frequency and quality
- * PTA/RTA Package
- * "Snapshot" VLP
- * "Snapshot" Inflow
- Reservoir Simulation Tool
- * Wellbore Model
- * Geologic/Geo-Physical Model
- * Enough Well History?

What Do We Need to Make it Real-Time?

- * Link to RT Data (w/Validation of Data)
- * Closed-Loop Wellbore Solution (w/Thermal Modeling)
- Closed-Loop Completion Solution Can incorporate w/Reservoir Model
- * Closed-Loop Reservoir Model
- * Transient Recognition
- * Boundary Recognition
- * Regime Recognition
- * Prediction vs. Actual Comparison
- * Engineering by Difference (Did anything Change?)

ODSI Windows Service: The Bits...



Closed-Loop WB Components

- Wellbore Thermal Modeling (Warming/Cooling)
- * Liquid Drop Out (Build-ups)
- * Liquid Surge (Start-up)
- * Phase Behaviour EOS Calcs
 - * Use SRK or PR w/Peneloux
- * Rate Modeling
 - * Residence Time
 - * Rate Surging & Decay
- * Coupled Effects (Rate-Thermal-Phase)

Developing Thermal/PVT Models

- * Run Static Temp/Pressure Survey
- * Run Flowing Temp/Pressure Survey
 - * Multiple Rates
- * Develop Heat Transfer Model Account for:
 - * Heat Capacity of Fluids/Tubulars/Annuli/Sinks
 - * Heat X-fer via Conduction
 - * Heat X-fer via Convection
 - * Heat X-fer via Forced Convection
- Can Tune PVT using same data... just get a good sample first

Note: If Continuity Doesn't Hold, the Well is Loading–up (which is important to know)

Continuity Equation

$\frac{\partial \rho}{\partial t} = -(\nabla \bullet \rho v)$

 Rate of Change in Density Caused by Changes in Mass Flux

Differential Form of Bernoulli Eqn Compressible Conditions

 $\Delta \frac{1}{2}(v)^2 + g\Delta h + \int_{p_1}^{p_2} dp / \rho + Ws +$ $\sum_{i} \left(\frac{1}{2} v^2 \frac{L}{R_{\nu}} f \right)_i + \sum_{i} \left(\frac{1}{2} v^2 e_v \right)_i = 0$

Mechanical Energy Balance (Bernoulli Equation)

 For Single-Phase Gas Flow in Pipes, the MEB reduces to:

$dp/\rho = -(g \sin \theta/g_c + 2f_f u^2/g_c D) dL$

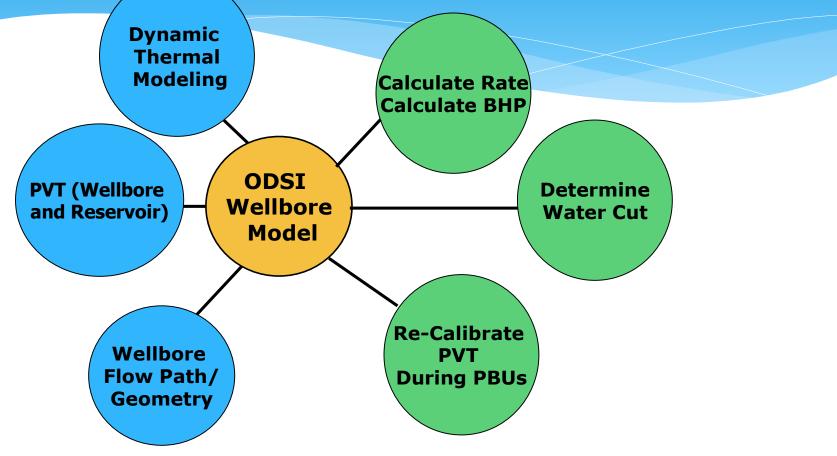
* Basis for CS, Gray & A-C

Bernoulli for Single Phase Oil Incompressible Conditions

$$\frac{dp}{d\rho} + \frac{vdv}{g_c} + \frac{g}{g_c}dz + \frac{2f_f v^2 dL}{g_c D} + dW_s = 0$$

* Basis for Hagedorn-Brown & Beggs/Brill

Simplification of Flow-in-Pipe Eqns


* Conceptually, these Equations are simply:

BHP = Gauge P + $\Delta P(\text{gravity})$ + $\Delta P(\text{friction})$

Using a Direct Bernoulli Solution for WB

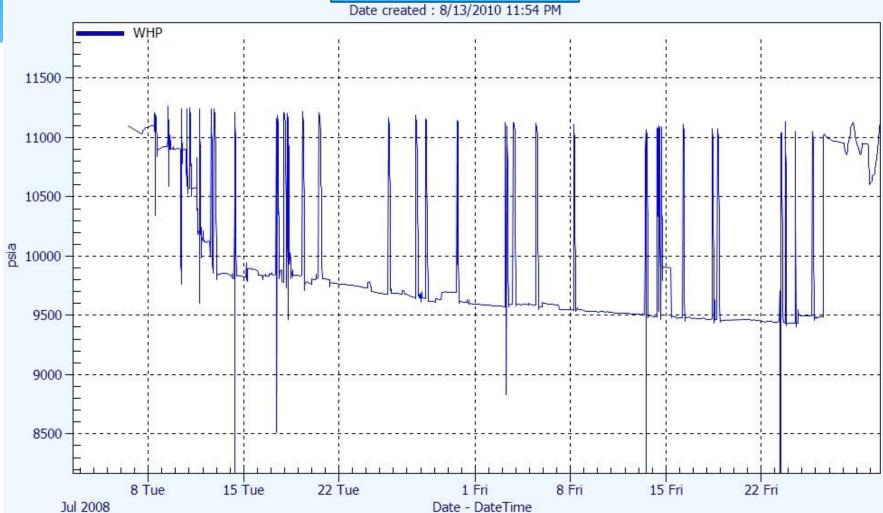
- * Works for Oil, Gas or Water (Continuity)
- * Gas
 - * Have DP, solve for rate & BHP
 - * Have Rate, solve for DP & BHP
- * Oil
 - * Have DP, solve for Water cut & BHP
 - * Sometimes possible to solve for rate (high rate)
- * Much Easier to Apply Parametric Models Continuously:
 - * Thermal Transients
 - * Rate Transients
 - * Phase Transients
 - * Coupled Rate & Thermal Transients

What Makes ODSI's Wellbore Model Different?

Completion Modeling

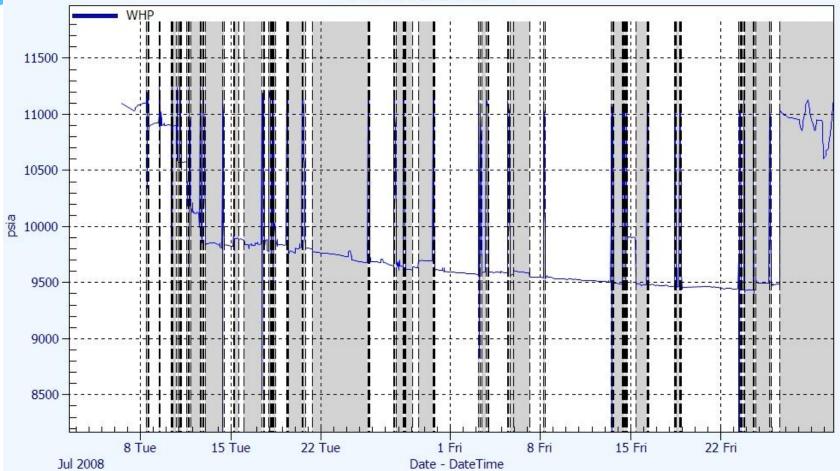
- Reconcile Well Geometry (frac, horizontal, etc.) with base inflow
 - * Multiple Layers?
 - * Build "skin" model (easiest way if it works)
- * Reconcile Completion/Reservoir Interaction
 - Partial Perforation/Penetration
 - * Pay Loss/Growth
 - * Near Well Stresses Elasto-Plastic Rock
- * True "Afterflow" vs. Terminal Velocity Flow

Closed-Loop Reservoir Solution

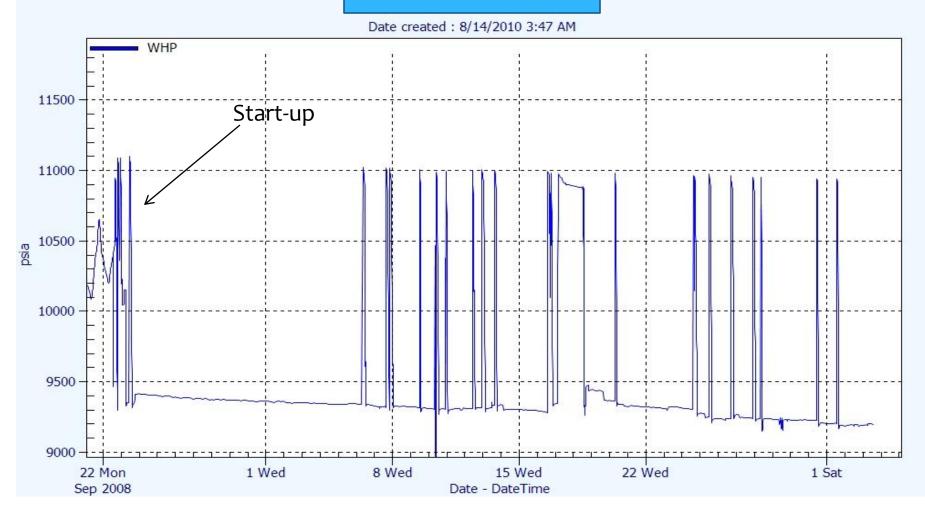

- * Use "Static Reservoir Model" as input
- * Use Transient Reservoir model when in transient flow
- * Use Steady-State Reservoir model in SS flow
- * Use Transient Recognition to "bob & weave"
- * Objective: Run very quickly & get close
- Recognize if there's a problem with the "static" model

Transient and Regime Recognition

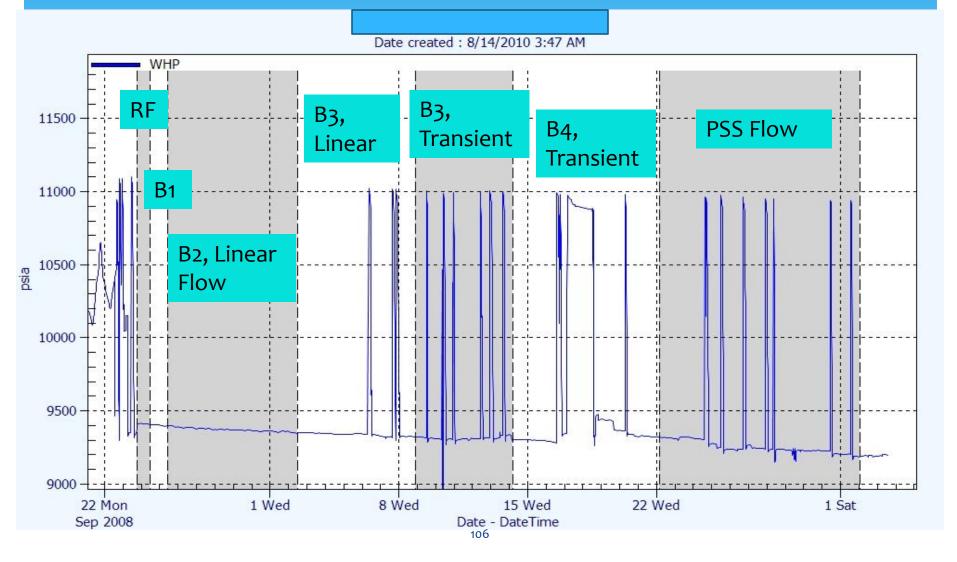
* Locate New Transients


- * Rate goes to zero, Rate stops being zero
- * Rate changes enough to start new transient
- Pressure Methods
 - * Wavelets
 - * De-convolution Variance
 - * DP Logic
- * Banded Response Recognition
 - * Transient vs. Steady-State
 - Boundary Recognition
 - Transition Recognition

Transient Recognition



Transient Recognition


Date created : 8/13/2010 11:54 PM

Boundary/Regime Recognition

Boundary/Regime Recognition

Methodology

- Start with most valid pressure measurement point
- * Use Measured, Calculated or Inferred Rate
- Work the Mech NRG solution to WHP and mid-completion BHP
- * Employ Complex Completion Model if Required
- * Use Banded Energy Solution, along with Transient/Regime Recognition to determine Reservoir Inflow in both Transient and Steady-State Flow
- Bob & Weave incorporate changes in Reservoir Model as it changes (i.e. Moving Water Contact)
- * Keep track of the important stuff & Warn PE's when something goes wrong!

Translation Back to Customary Views

- Present the Results in a way that folks are used to...
 ... or at least in terms they are accustomed to
- * Well Test Analysis Results
- * Productivity Tracking
- * In-Place, Hydraulically Connected, and Mobile Hydrocarbon Volumes
- * Reservoir Map (Energy Equivalent Map)
- * Nodal Plots (Snapshots as function of time)
 - * Includes Dynamic WBM & Res Inflow Model

Strategies for Dealing with RT Data/Analysis

- Make sure that predictions match actual well behavior
- * Look for changes!
 - * Perm
 - * Skin
 - * Apparent Volumes
- * Let the well tell you don't impose models on the well!
- * Look for changes in the rate of change

Real-Time Data Strategies

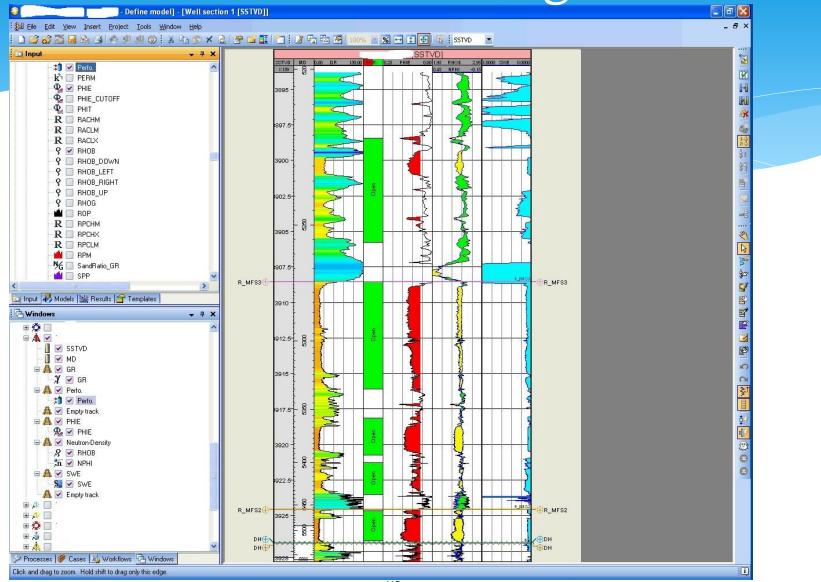
- Spend time looking for results, not just digging for data
- Validate the results; only analyze manually if you disagree... or if it's important enough to spend time on
- * Think about what the results mean
- * Think about how this meaning affects your decisions

If you know how much money you have left in the ground and understand the well history, you'll make better decisions

Automated Processing Case Studies

Case Studies List

- North Sea #1 Rate Calculations
- * HPHT GOM Well Test Gas-Condy (DOT)
- * Fizzy Oil GOM Oil well Start-up
- * NordZee Gas Well Start-up
- * Deepwater GOM Oil Onset of Water?
 - * Calculated Oil-Water Splits
- * HPHT GOM Shelf Start-up


North Sea #1 – Gas Well

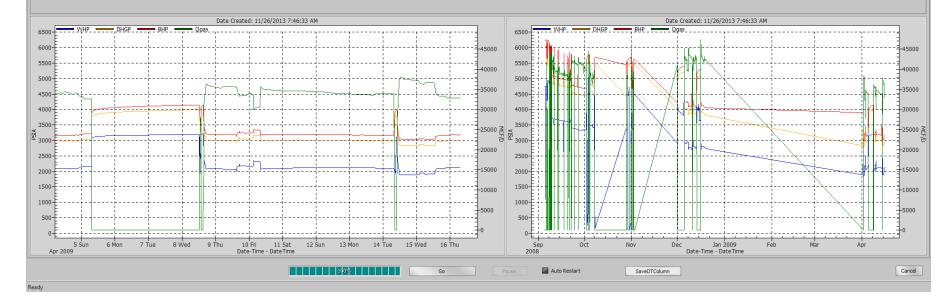
- Start-up of new gas field (Subsea Trees)
- * Well Tests have a lot of variance
- * MDTs and PVT indicate same fluid in all zones
- * Objectives:
 - * Explain differences in the well test analyses
 - * Confirm that calculated rates match measured rates

North Sea #1 WBD

	: 75,4 n	n. DATE : MAY/20		ANNULUS FLUID : CAC INHIBITED CACL2 BRIN						
OMPL	ETION	VOLUMES	5-4-	DRILLING DEPTHS / RT		2				
UBING	VOLU			TOL 7" LINER HANGER		RT				
	/OLUM									11
				TRSCSSV volume 9000-	->0 psi = 1	00 cc		1		
			TREE 10K API / 10,000 p							1
	IG HEA		CAMERON 4"1/16 10,0				0.115		liH.	
	IG HAN			5" VAM TOP 13% CR W/ 3,925" S API HAND GATEVALVE	RP PROF	ILE 10,395/	ACME			
	STER V			API ACTUATOR GATEVALVE						
	B VALVE			API HAND GATEVALVE	To	bottom of it	tem	1	lil I	
FLOW	/ WING		CAMERON 4"1/16 10K	API ACTUATOR GATEVALVE	length	origin			1!	
TOP	CAP		CAMERON 6"1/2 NOM	INAL STUB ACME	of item	tbg. head a		Original		
			STRING		Length	Depth	ID"	Drift SL	li 🖂	
ITEM	QTY			all length to bottom	m.	mTH.	inches	inches	ЦЦЦ	
1	1		GER 13"5/8 X 4. 5" VAM T		0.00		3,925"	3,900"	IH	
2	1		K-OFF STRADDLE INSTA "1/2 VAM TOP 12.6# L80		1 47	0.00	2,500" 3,958"	3,900"		1
2	1		UT) 4"1/2 VAM TOP 12.6# L80		1.47	2.90	3,958"	3,900"		1
4	1		UT) 4"1/2 VAM TOP 12.6#		2.92	5.82	3,958"	3,900"		1
						5.82		3,900"		1
_	4	TUDINOS (INCO)		1105.0	10.77	5.82	0.05	3,900"		1
5	4		OP 12.6# L80 13%CR (RA 1 TOP 12.6# L80 13%Cr	ANGE-3)	48.63	54.45 56.37	3,958"	3,900" 3.900"		1
7	1	Halliburton SP-1 TRS			2.36	58.73	3,908	3,800		1
8	1		1 TOP 12.6# L80 13%Cr		1.44	60.17	3,958"	3.833		1
						60.17		Drift	ו ור	
						60.17		Nylon		
9	257	TUBINGS 4"1/2 VAM T	OP 12.6# L80 13%CR (R/	ANGE-3)	3134.63	3194.80	3,958"			
						3194.80 3194.80				
						3194.80		+		
10	1	PUP JOINT 4"1/2 VAM	TOP 12.6 # L80 13%Cr		1.92	3196.72	3,958"	3.833		
11	1	BAKER GAUGE CARE			2.29	3199.01		3.833		
12	1		TOP 12.6 # L80 13%Cr		1.44	3200.45		3.833		
13	1		OP 12.6# L80 13%CR (RAM	NGE-3)	12.23	3212.68		3.833		
14 15	1	PUP JOINT 4"1/2 VAM HALLIBURTON 3.75"	TOP 12.6 # L80 13%Cr		1.98	3214.66 3215.13		3.833 3.833		
16	1		TOP 12.6 # L80 13%Cr		1.46	3215.13	3,958"	3,833		1
17	1		OP 12.6# L80 13%CR (RAN	NGE-3)	12.24	3228.83	3,958"	3.833		
18	1		TOP 12.6 # L80 13%Cr		1.92	3230.75	3,958"	3.833		1
19	1	HALLIBURTON PACK			1.95	3232.70		3.833		1
20	1		TOP 12.6 # L80 13%Cr	105.01	1.44	3234.14		3.833		1
21	1		DP 12.6# L80 13%CR (RAN TOP 12.6 # L80 13%Cr	NGE-3)	12.24	3246.38 3248.30		3.833 3.833		1
23	1	HALLIBURTON 3.68"			0.41	3248.71		3.833		1
24	1		TOP 12.6 #L80 13%Cr		1.40	3250.11		3.833		
25	1	PUP JOINT (SPACE-O	OUT) 4"1/2 VAM TOP 12.6#	#L80 13%Cr	2.95	3253.06	3,958"	3.833		1
26	1		TOP 12.6 # L80 13%Cr		1.92	3254.98		3.833		1
27	1	SELF ALIGNING HALF	MULE SHOE WIRELINE	IN PBR	2.62	3257.60	3,958"	3.833		1
				IN PBR	1.00					
					1		<u> </u>	1		
								1		- 1
_					+		-	1		
					+					
		1			1			1		
								1		
		3"1/2 LANDING COLLA	AR		HUD	3923.30	mTH			
_									_ L _ L	
Perfora	tions				+	NOT NOT				
CP	2" Omo	ga poweriet 4.2 ch/8 80	deg. phasing 3946.0 3	3982.0 mRT 36 m net.	-	NOT NOR	W CLASS	DIFIED		
91	2 One	ga powerjet 4.2 st/lt 00	way, priability - Jerrol U J	www.wintti oummer.	1	Maximum	deviation	7 degrees	@ 3390 mtr	
								. segrees		
						Rev-02				

North Sea #1 Logs

North Sea #1 - Summary

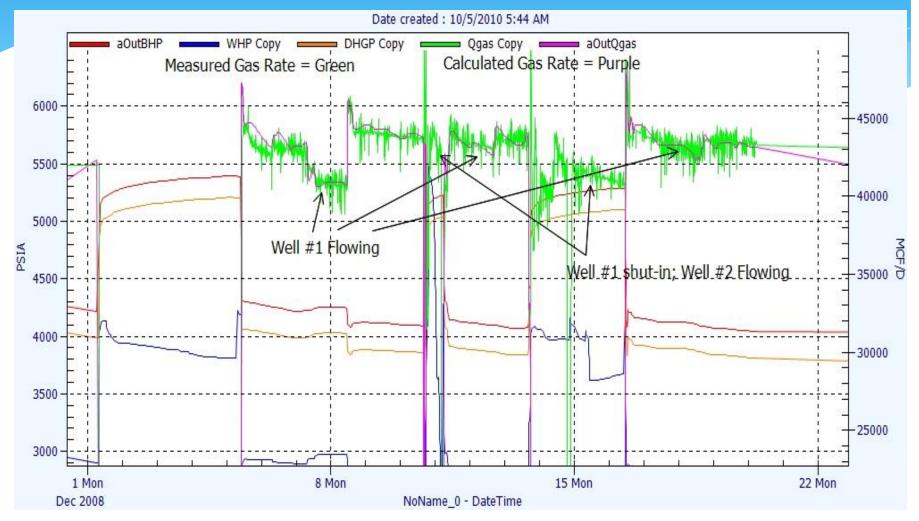

🏁 x64 Well Analyzer - C:\WORK\RT Software Demos\DER ver - North Sea #1 DHPG Calc Rate v Jan 18.ProData - [Real Time Testing]

🖳 File Memory Analysis Plot View Tools Help

Inputs Summary Outputs

Summary PBU DD PTA/Productivity HC Volumes P/z Derivative OilWaterRates Analysis Events

	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	QGasi Mcf/D	QGas Mcf/D	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/MMcf	Report Link	Graph Link
1	21Sep2008 10:24:00	21Sep2008 14:42:00	4.3	PBU	3597	4231	4700	5266	4929	5457	39174	39174	NaN	NaN	NaN	5848	NaN	NaN	RTRep 20085ep21 10240	RTRep 20085ep21 10240
2	07Oct2008 19:06:00	28Oct2008 21:48:00	506.7	PBU	3358	4187	4469	5120	4696	5307	39746	39746	9.6	4	355	5988	60	8.93	RTRep 2008Oct07 19060	RTRep 2008Oct07 19060
3	28Oct2008 21:48:00	29Oct2008 12:36:00	14.8	DD	4519	3379	5384	4457	5577	4678	0	37972	30.5	25.4	708	4627	20	18.63	RTRep 2008Oct28 21480	RTRep 2008Oct28 21480
4	29Oct2008 12:36:00	31Oct2008 18:36:00	54	PBU	3386	389	4457	5504	4678	5701	37833	37833	9.6	4	339	5701	60	8.95	RTRep 20080ct29 12360	RTRep 2008Oct29 12360
5	01Dec2008 07:00:00	05Dec2008 09:54:00	98.9	PBU	2912	3535	3992	4621	4217	4795	41009	41009	8.2	2.5	269	5584	70	6.55	RTRep 2008Dec01 07000	RTRep 2008Dec01 07000
6	05Dec2008 09:54:00	10Dec2008 15:48:00	125.9	DD	4190	2757	5199	3857	5388	4085	0	43293	37.4	34.2	905	3376	16	20.91	RTRep 2008Dec05 09540	RTRep 2008Dec05 09540
7	11Dec2008 05:42:00	13Dec2008 16:24:00	58.7	DD	4776	2843	5044	3899	5229	4126	0	42717	13.2	7.7	571	3824	44	13.38	RTRep 2008Dec11 05420	RTRep 2008Dec11 05420
8	13Dec2008 17:48:00	16Dec2008 11:00:00	65.2	PBU	2742	4139	3844	5102	4074	5289	42749	42749	9.7	4.5	439	5489	57	10.26	RTRep 2008Dec13 17480	RTRep 2008Dec13 17480
9	16Dec2008 11:00:00	20Dec2008 06:00:00	91	DD	3806	2728	5102	3814	5289	4041	0	43577	12	6.5	546	3723	48	12.52	RTRep 2008Dec16 11000	RTRep 2008Dec16 11000
10	05Apr2009 07:12:00	08Apr2009 12:48:00	77.6	PBU	2167	2853	3025	3654	3207	3799	32625	32625	9.7	3.6	283	4346	62	8.66	RTRep 2009Apr05 07120	RTRep 2009Apr05 07120


North Sea #1 - PBUs

U DD PTA/ Produ	ctivity HC Volumes P/z		/e OilWate	rRates Ana	alysis Events															
Start D/T Immyyyy hh:mm:ss dd		Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	QGasi Mcf/D	QGas Mcf/D	Perm 5	ikin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/MMc	f Report Link	Graph Link	
ep2008-10:24:00 2:		4.3	PBU	3597	4231	4700	5266	4929					NaN	NaN	5848	NaN			40 RTRep 20085ep21 10240	
ct2008 19:06:00 28		506.7	PBU	3358	4187	4469	5120	4696		39746		9.6	4	355	5988	60		RTRep 20080ct07 1906	O LIC DDILing	
Oct2008 12:36:00 3: Dec2008 07:00:00 05		54 98.9	PBU PBU	3386 2912	389 3535	4457 3992	5504 4621	4678 4217		37833 41009		9.6 8.2	4 2.5	339 269	5701 5584	60 70		5 RTRep 2008Oct29 1236	0 115 DPU inc 0 115 DPU inc 00 RTRep 2008Dec01 07000	
Dec2008 17:48:00 16		65.2	PBU	2742	4139	3844	51021	4074		42749		9.7	4.5	439	5489			5 RTRep 2008Dec13 1748	80 RTRep 2008Dec13 17480	
5Apr2009 07:12:00 08		77.6	PBU	2167	2853	3025	3654	3207	3799	32625	32625	9.7	3.6	283	4346	62			20 RTRep 2009Apr05 07120	
WHP DHGP	ВНР	Dat <u>Ogas</u>	te Created	: 11/26/20:	13 7:46:33	AM									Out BHP		M1(v=00.)		/26/2013 7:46:14 AM P1(y=146.8*log(x)+3870)	
		2900											t:	1.1	out bill		10 700			
					ļ							45000	4100-					· · · · · · · · · · · · · · · · · · ·		
												45000	4100-							
													4100							
				· · · · · · · · · · · · · · · · · · ·		·		+-		~		40000	4000					· · · · · · · · · · · · · · · · · · ·		
~~~										<u> </u>		40000	Ī							
~										·		40000	4000							
										<u> </u>		40000 35000 30000	4000							
												40000 35000 30000 -25000 MCF	4000 3900 3800 3800 3700 4 4 4 4 4 4 4 4 4 4 4 4 4							
										<u>``</u>		40000 35000 30000 -25000 MCF	4000 3900 3800							
												40000 35000 30000 25000 MGP 50 220000	4000 3900 3800 3800 3700 4 4 4 4 4 4 4 4 4 4 4 4 4							
										<u> </u>		40000 35000 30000 225000 Mg 20000 15000	4000 3900 3800 3700 3600 3500							
												40000 35000 30000 225000 Mg 20000 15000	4000 3900 3800 3700							
												40000 35000 225000 M K 20000 15000 10000	4000 3900 3800 3700 3600 3500		/					
												40000 35000 25000 K 20000 15000 10000	4000 3900 3800 3700 33500 33500							
												40000 35000 22000 AG 22000 10000 5000	4000 3900 3800 3700 33500 33500							

### North Sea #1 - DDs

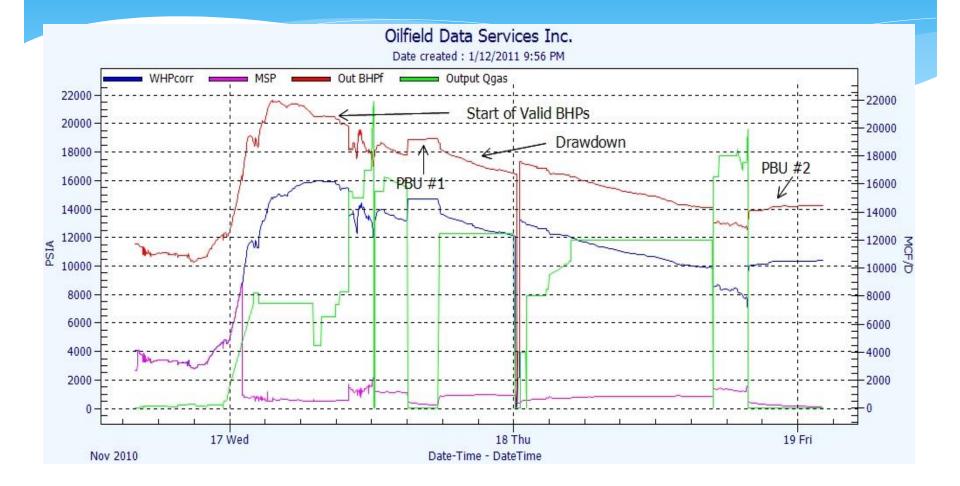
ary Outpu	nalysis <u>P</u> lot <u>V</u> i 15																	
DD	PTA/ Productivity	HC Volumes P/z	Deriva	tive OilWate	erRates Analy	sis Events												
Start D/ myyyy hi	r :mm:ss ddMmn	End D/T ayyyy hh:mm:ss	Test Length Hours	Test Type		'HPf DHG sia psia		BHPi psia	BHPf psia	QGasi QG Mcf/D Mcf	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/MMcf	Report Link	Graph Link
:t2008-2	1:48:00 29Oct	2008 12:36:00	14.8	DD	4519	3379 53	84 4457	5577	4678	0 379	2 30.5	25.4	708	4627	20	18.63	RTRep 2008Oct28 21480	0 RTRep 2008Oct28 21480
2008 Oʻ	9:54:00 10Dec	2008 15:48:00	125.9	DD	4190	2757 5:	99 3857	5388	4085	0 432	3 37.4	34.2	905	3376			RTRep 2008Dec05 0954	0 RTRep 2008Dec05 09540
2008-0	5:42:00 13Dec	2008 16:24:00	58.7	DD	4776	2843 50	44 3899	5229	4126	0 427	7 13.2	7.7	571	3824				0 UC DD ing
2008 1	1:00:00 20Dec	2008 06:00:00	91	DD	3806	2728 5:	02 3814	5289	4041	0 435	7 12	6.5	546	3723	48	12.52	RTRep 2008Dec16 11000	0 RTRep 2008Dec16 11000
ľ			D	ate Created	: 11/26/2013	7:46:33 AM											Date Created: 11/	26/2013 7:46:14 AM
-	DHGP -	BHP	Qgas													M1/v=00.0	*la e(u) - 2040 4)	D4(- 445 08(-)-0070)
Ψ <u>Η</u> Ρ													2 3 3	Out BHP	·	M1(x-90.0	*log(x)+3948.4)	P1(y=146.8*log(x)+3870)
												4100-		Out BH				P1(y=146.8 ⁻¹⁰ g(x)+3870)
-+				 				+-		~		4100- 4000- 3900-		Out BH				·
				  						<u></u>		4000-		Out BH				
												4000- 3900- 3800- 3800- 3700-		Out BH				
												4000- 3900- 3800- 3800-		Out BH				
												4000- 3900- 3800- 3800- 3700- 3600-						
					 							4000- 3900- 3800- 3800- X 3700- 3500- 3500-		Out BH				
												4000- 3900- 3800- 3700- 3600- 3500- 3400-		Out BH				

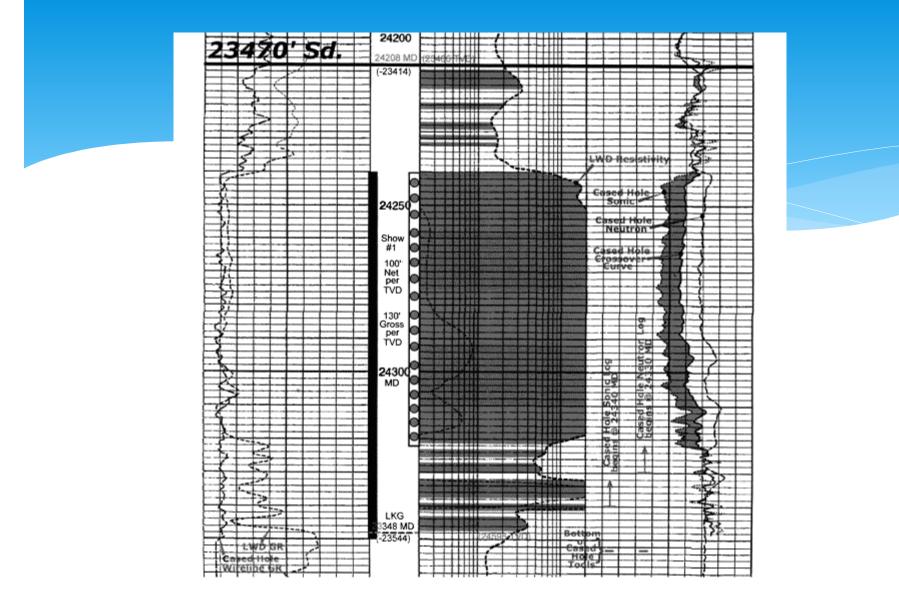
# North Sea #1 Rate Check

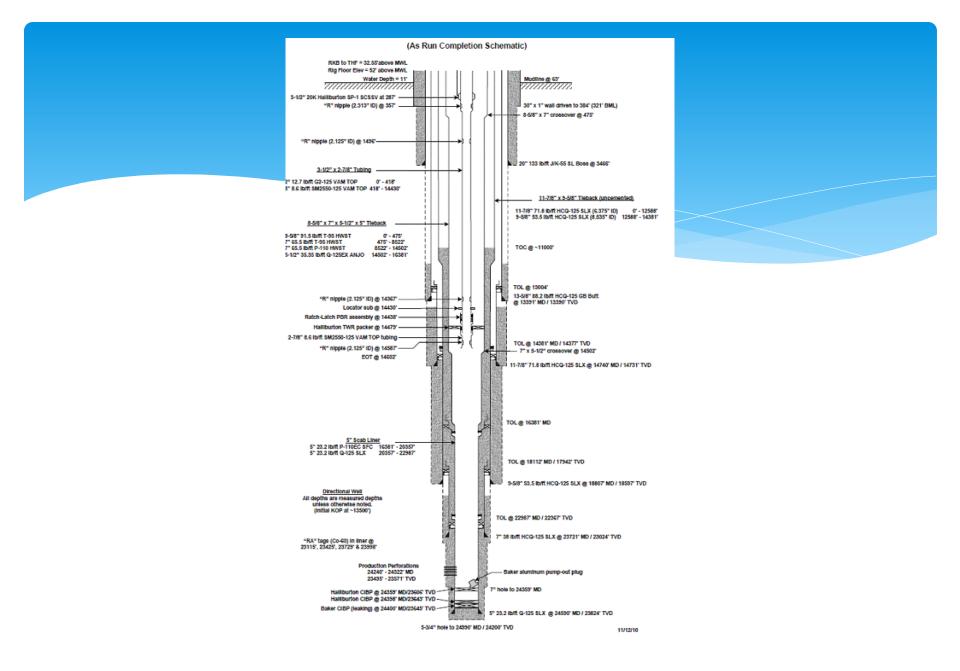


### North Sea #1 - Conclusions

- * Rates (measured vs. calculated) appear valid
- * Build-ups are consistent perm of 10md, skin of 3-ish
- * Drawdowns are all over the place
  - Maybe related to zonal flow?
  - No consistent explanation
- Ignore DD's use PBUs for evaluations of change


# HPHT GOM Gas-Condy Extended Well Test


### Set-up:


- * Well Flowed-Back 6 months before
- "Discredited" Well Test/Reservoir Engineer said it Depleted on Test
- * Supposed to be upwards of 1 TCF of reserves in field
- * Temporary MOPU on location
- * Rock Could Be 'Squishy'
- * Good CBL
- * Packer could be a weak point

Objective: Determine if reserves justify a platform

## Whaddaya Think?







### **DOT - Summary**

### 🕨 x64 Well Analyzer - C:\WORK\RT Software Demos\DOT #1 - UHPHT GOM using outBHP.ProData - [Real Time Testing] - 🖬 🗙 Pile Memory Analysis Plot View Tools Help Inputs Summary Outputs Summary PBU DD PTA/ Productivity HC Volumes P/z Derivative OilWaterRates Analysis Events Test End D/T QGas PStar DPs/Q Shart D/T Tesl WHP WHD DHGPi DHGPf BHP BHP QGas DPskin PI Eff Length Skin Report Link Graph Link ddMmmyyyy hh:mm:ss ddMmmyyyy hh:mm:ss Туре psia Mcf/D Mcf/D md psia 06 psi/MMcf psia psia psia osia psia DSİ Hours 309 -388.0 RTRep 2011May04 1016 RTRep 2011May04 1016 1 04May2011 10:16:19 04May2011 19:20:04 9.06 DD 14286 8946 -1 -1 18619 13553 0 13298 0.2 -2.4 -5161 9100 PBU 7 174.2 RTRep 2011May04 1923 RTRep 2011May04 1923 04May2011 19:23:04 04May2011 20:23:49 1.01 9188 12061 13734 16149 14607 14607 70.5 2545 16540 2 -1 -1 11.3 149 -163.8 RTRep 2011May04 2141 RTRep 2011May04 2141 3 04May2011 21:41:04 05May2011 18:29:49 20.81 DD 13972 7734 -1 -1 17918 11482 0 14118 0.2 -1.2 -2314 9402 16 96.14 RTRep 2011May05 1830 RTRep 2011May05 1830 05May2011 18:30:04 12May2011 04:55:10 154.42 PBU 7182 3363 -1 -1 11067 6076 8016 8016 7.3 27.2 771 12629 4 12May2011 04:55:10 13May2011 03:06:25 22.19 DD 3385 5708 6107 9234 0 4870 -3.8 -2276 8117 399 -4675. RTRep 2011May12 0455 RTRep 2011May12 0455 5 -1 -1 0 13May2011 03:06:25 13May2011 16:27:40 PBU 5746 6869 -1 9279 10428 5705 5705 NaN NaN NaN 63218 NaN NaN RTRep 2011May13 0306 RTRep 2011May13 030 RTRep 2011May13 1627 13May2011 16:27:40 17May2011 06:05:55 85.64 DD 6941 2939 -1 -1 10511 5555 0 8000 0 -2.8 -1285 5715 33258 -1606. RTRep 2011May13 1627 RTRep 2011May17 0607 RTRep 2011May17 0607 8 17May2011 06:07:25 17May2011 13:03:40 6.94 PBU 2900 3587 -1 -1 5499 6339 3606 3606 0.8 1.3 140 6754 76 38.91 323 -451.0 RTRep 2011May17 1303 RTRep 2011May17 1303 17May2011 13:03:40 18May2011 04:07:10 9 15.06 DD 3582 2652 -1 -1 6332 5153 0 3250 0.1 -2.1 -1466 4778 18May2011 17:02:10 18May2011 21:01:25 3.99 PBU 2502 3064 -1 4912 5615 **3005** 3005 0.4 -0.5 -89 5983 116 -29.59 RTRep 2011May18 1702 RTRep 2011May18 1702 10 -1 Date Created: 11/26/2013 8:06:38 AM Date Created: 11/26/2013 8:06:38 AM BHP BHP Qgas Qgas -16000 -16000 18000 18000 -14000 -14000 16000 16000 --12000 12000 14000 14000--10000 -10000 12000 12000-¥ 10000 8000 MCF 10000--8000 ਨੂੰ 8000 8000 -6000 -6000 6000 6000 4000 4000 4000 4000 -2000 -2000 2000 2000 6PM 18 Wed 3AM 6AM 9ÅM 12PM 3PM 6PM 9PM 8 Sun 15 Sun 3DM 9PM 17 Tue May 2011 Date-Time - DateTime May 2011 Date-Time - DateTime 100% Cancel Go Auto Restart SaveDTColumn 125

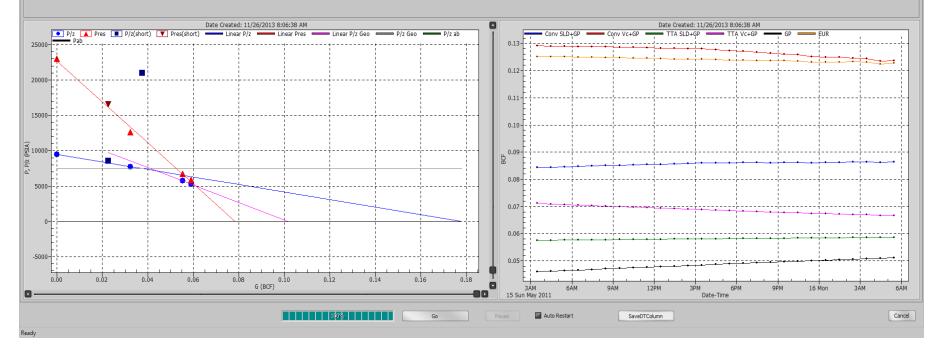
### DOT - PBUs

	Memory Analysis I	Plot View Tools Help	)																			
	Summary Outputs																					
er'	PBU DD PTA/P	roductivity HC Volumes P/z	Derivat	ive OilWat	erRates Ar	nalysis Events	•]															
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	QGasi Mcf/D	QGas Mcf/D	Perm md	Skin		PStar psia	PI Eff I % ps	DPs/Q ii/MMcf	Report Link		Graph Link	
t	04May2011 19:23:04	04May2011 20:23:49	1.01	PBU	9188	12061	-1	-1	13734	16149	14607	14607	11.3	70.5	2545 1	6540	7	174.2	TRep 2011May0	4 1923	RTRep 2011May04 1923	
		12May2011 04:55:10		PBU	7182	3363	-1		11067	6076		8016		27.2	771 1				TRep 2011May0	5 1830	RTRep 2011May05 1830	
		17May2011 13:03:40	6.94	PBU	2900	3587	-1	-1	5499	6339	3606	3606	0.8	1.3	140	6754	76 3	38.91	TRep 2011May1	7 0607	RTRep 2011May17 0607	
	18May2011 17:02:10	18May2011 21:01:25	3.99	PBU	2502	3064	-1	-1	4912	5615	3005	3005	0.4	-0.5	-89	5983	116 -:	29.59	TRep 2011May1	8 1702	RTRep 2011May18 1702	
			D;	ate Creater	1: 11/26/20	013 8:06:38	AM												Date Create	ed: 11/26/	2013 8:06:38 AM	
	WHP	BHP Qgas		1	1	1		1			1		16000			Out BHP	M1	(y=196.4*			L(y=268.2*log(x)+5446.2)	
				1							1			5600-						1 1 1 1 1 1 + -   -		
01						····					+			5000	- i - i - i							
											-	1	14000	E	1 1 1	1111						
0	- -	·l		L		·····					+	·		5500-	1 1 1			44		1 1 1		
	t i			1							1	1	12000	Ę								
00				;							÷	·		5400-						+		
				   							1			F								
)				+ ¦	!	·		-+			+		10000	FROM								
	E			1				Ì			į			5300-						世		
)				¦		····					+		8000 MCF/D	K -	i i i					M		
	H i										1	1	9 g	5200-				++		+	/	
						····					<u>+</u>		6000	E								
00	Fi i i										1	1	0000	5100-						<u>7</u> 0		
	- I I			<u>ہ</u>		·					+			5100-	iii	1111				111		
										_(	1	1	4000	E								
00								<u></u>			+			5000-				+	•	+		
01								1		-		; 1	2000	E								
101											+			4900-				1 İ	- i i i i	i i i	i i i	
01											į.	1								4-1-1		
														4900-				·		+		
)								-+               					0	4900-				·		+		
01	3PM 6PM	9PM 18 Wed	3/		6AM			  12PM	3PM	6	 	9PM	0	4900			-2			10-1		
) ) ) )		9PM 18 Wed	3/		6AM e-Time - Da			12PM	ЗРМ	6	РМ	9PM	0	4900-			-2			10-1	t: May-18-2011 17:02:10]	

Ready

# DOT - Productivity

4 Well Analyzer - C:\WORK\RT Software Demos\		using outBHP.ProData - [Real Time Testing	g]					
<u>File M</u> emory <u>A</u> nalysis <u>P</u> lot <u>V</u> iew <u>T</u>	ools <u>H</u> elp							
ts Summary Outputs	human D/a Daniur							
itial Pres (PSIA)	O O	tive OilWaterRates Analysis Events						
ist PBU DPskin/Q (PSI/(MMCF/D))	-29.59	05/18/2011 21:01:25						
ist DD DPskin/Q (PSI/(MMCF/D))	-451.07	05/18/2011 04:07:10						
st P* (PSIA)	5983	05/18/2011 21:01:25						
st Productivity Q/DP (MCF/D/PSI)	0.166	05/18/2011 17:00:40						
ist TTA (PSI/(MMCF/D))	6029.99	05/18/2011 17:00:40						
(*************************************	0029.99	03/10/2011 17:00:40						
	г	Nate Created: 11/26/2013 8:06:38 AM					Date Created: 11/26/2013 8:06:38 AM	
Productivity Qgas			1	-	-	TTA Qgas		-
÷-1					6000	1		
E I				-	5500			
				11000	E			-11
					5000			
				-	4500		/	
<b>€}</b> ;;					Ē	1		-91
					4000	··· †	·····	
				8000	(Q/JJWW)/ 3500			
								-7
				-	3000			
		× `		6000	2500			
		<u></u>			E			-
				-5000	2000			
F I I					F	1		= .
				4000	1500			
				4000	E	7		
				4000	1500	1		
		Date-Time - DateTime	15 Sun		E	8	Sun Date-Time - Date Time 15 Sun	


# DOT – P/z and MBAL/EBAL

### 🚾 x64 Well Analyzer - C:\WORK\RT Software Demos\DOT #1 - UHPHT GOM using outBHP.ProData - [Real Time Testing]

- File Memory Analysis Plot View Tools Help

### Inputs Summary Outputs

Summary PBU DD P	TA/ Productivity	HC Volumes	P/z (	Derivative 0	ilWaterRates	Analysis Events								
Date Time	Gas Produced	PBU Duration	Pres	z-Factor	P/z	GIP SLD @P=0	GIP SLD @P ab=15	GIP P/z @P=0	GIP P/z @P/z ab=15	GIP P/z geo @P=0	GIP P/z geo @P/z ab=15	m Pres	m Pz	m Pz Geo
MM/dd/yyyy HH:mm:ss	BCF	HOURS	PSIA	dimless	PSIA	BCF	BCF	BCF	BCF	BCF	BCF	PSIA/BCF	PSIA/BCF	PSIA/BC
01/01/0001 00:00:0	0.00		23000	2.434	9449.	NaN	NaN	NaN	NaN	NaN	NaN	-99999.0	-99999.0	-99999
05/04/2011 20:23:49	0.02	1	16540	1.938	8532.2	NaN	NaN	NaN	NaN	NaN	NaN	-99999.0	-99999.0	-999999.
05/12/2011 04:55:1	0.03	154	12629	1.633	7734.	0.1	0.1	0.2	0.2	0.1	0.1	-320740.1	-53036.1	-10607
05/13/2011 16:27:40	0.04	13	632187	30.157	20963.	0.1	0.1	0.2	0.2	0.1	0.1	-320740.1	-53036.1	- 106072
05/17/2011 13:03:4	0.06	7	6754	1.181	5717.	0.1	0.1	0.2	0.2	0.1	0.1	-295835.6	-53036.1	-10607
05/18/2011 19:02:2	0.06	2	5880	1.119	5254.	0.1	0.1	0.2	0.2	0.1	0.1	-290040.1	-53036.1	-12294

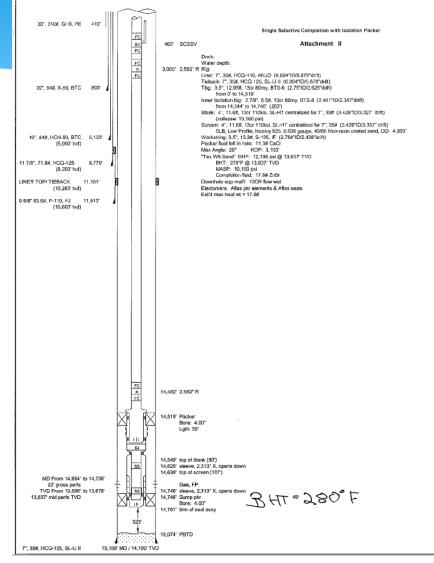


_ 0 _X

### **DOT - Conclusions**

### * It's WEE!

* Gosh, we wasted a lot of rig time...


# GOM Volatile Oil Well

### * Start-up: Objectives

- * Figure Out kh & skin
- * Determine Productivity
- * Determine Oil-in-Place
- * Estimate Recovery

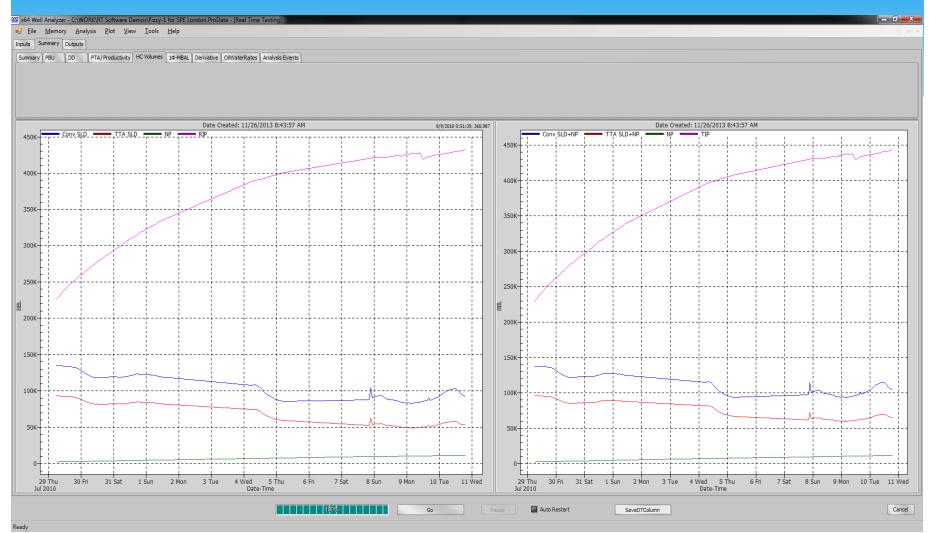
Objective: Does an injection well make sense?

### Fizzy - WBD



### Fizzy-1 Logs




# Fizzy - Summary

File		Software Demos\Fizzy-1 for \$	SPE London	.ProData - [R	Real Time Te	sting]			_	_			_	_								
		Plot View Tools Helj	р																			
	Summary Outputs																					
Summa	Y PBU DD PTA/P	roductivity HC Volumes 1Φ-	MBAL Deriv	ative OilWat	terRates A	nalysis Events																
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia		DHGPi ( psia				Qoil_i Qo BBL/D BBI		Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/BBL	Report Link	Graph Link			
1	25Jul2010 15:40:35	27Jul2010 16:51:19	49.18	DD	6252	5736	-1	-1	9903	9341	0	725 39.7	3.3	134	9177	65	0.19	RTRep 2010Jul25 15	403 RTRep 2010Jul25	15403		
			D	ate Created:	: 11/26/20	13 8:43:57 A	AM											Date Created: 1	11/26/2013 8:43:57 AM			
		BHP Qoil	1					1							VHP -	BHP	Qoi			1		
1000	0+																					
	12 7				]								10000	) 								
					1									E								1
900													9000	E								
	0											-700	9000									
	0											_										
800	0											 	9000 8000									
800	0											_	9000									
800 700												600 500	9000 8000 7000									
800 700												 	9000 8000 7000									
800 700	0				· · · · · · · · · · · · · · · · · · ·							600 500	9000 8000 7000									
800 700 600	0												9000 8000 7000 7000									
800 700 600													9000 8000 7000 7000									
800 700 600 500 400													900( 800( 700( 500(									
800 700 600 500 400												600 	900( 800( 700( 500(									
800 700 600 500 400 300													9000 8000 7000 5000 4000 3000									
900 800 700 600 500 400 300												600 	9000 8000 7000 5000 4000									
800 700 600 500 400 300												600 	9000 8000 7000 5000 4000 3000									
800 700 600 500 400 300			1 5	in Dati	e-Time - Dia	iteTime		8 Su				600 	9000 8000 7000 5000 4000 3000 2000					1 Sun	Time - DateTime	8 Su	n	
800 700 600 500 400 300 200			1 50	in Dati	e-Time - De	teTime		8 Su	un			600 	9000 8000 7000 5000 4000 3000 2000					1 Sun Date-	Time - Date Time	8 Su		

# Fizzy - Productivity

al Pres (PSIA) : PBU DPskin/Q (PSI/(BBL/D)) : DD DPskin/Q (PSI/(BBL/D))		vative OlWaterRates Analysis Events 01/01/0001 00:00:00 07/27/2010 16:51:19	x							
nry PBU DD [PTA/Productivity] HC Volumes al Pres (PSIA) : PBU DPskin/Q (PSI/(BBL/D)) : DD DPskin/Q (PSI/(BBL/D))	0 0 .19	01/01/0001 00:00:00	•							
al Pres (PSIA) : PBU DPskin/Q (PSI/(BBL/D)) : DD DPskin/Q (PSI/(BBL/D))	0 0 .19	01/01/0001 00:00:00								
: PBU DPskin/Q (PSI/(BBL/D)) : DD DPskin/Q (PSI/(BBL/D))	0 .19		·							
:DD DPskin/Q (PSI/(BBL/D))	.19									
			•							
((517)		01/01/0001 00:00:00								
Productivity Q/DP (BBL/D/PSI)	0.421	08/12/2010 16:30:25								
	2372.92	08/12/2010 16:30:25	•							
	C	ate Created: 11/26/2013 8:43:57 AM					Date Creater	d: 11/26/2013 8:43:57 AM		
Productivity QOil					2400	TTA QOI				
[ <b>\</b>			·			_				7
<u> </u>					2200				<u></u>	
E					2000				·	
Į					-					
ļ					1800			/	1	-5
E I 🔪										
										-4
E				-3	<u>a</u>					-3
					1200					
E					0					-2
					1000	~				
E					800					
						-m-				
E		•		t	600	·····	<b>bb</b>	· · · · · · · · · · · · · · · · · · ·		<b>_</b>
ug 2010	1 Sun	Date-Time - DateTime	8 Sun		Aug 2010		1 Sun Dat	te-Time - DateTime	B Sun	
			100%	134	Pause 4	Auto Restart	SaveDTColumn			Cano

# Fizzy – Flowing MBAL/EBAL



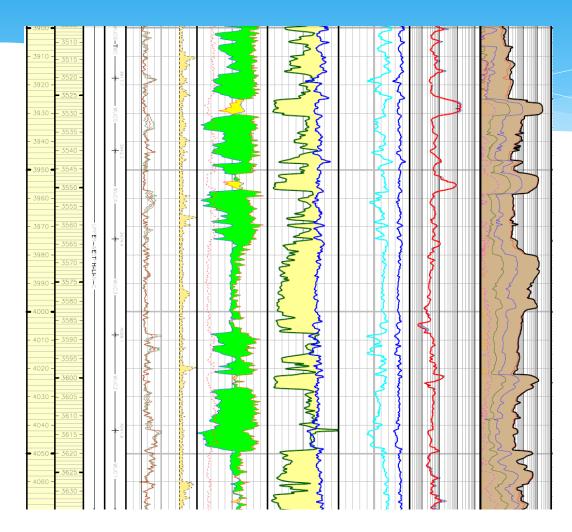
135

# Fizzy - Conclusions

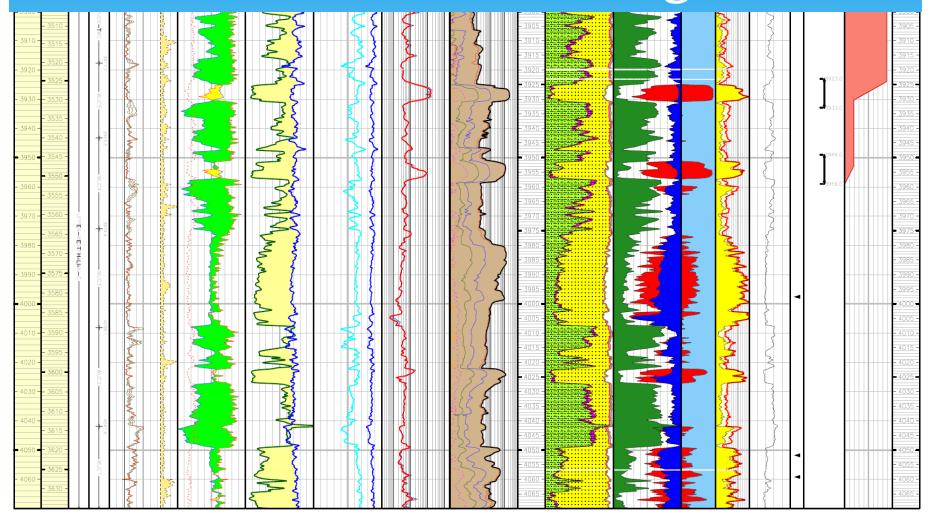
- * Only about 450,000 STB in place
- * Around 100,000 recoverable by natural drive
- * Maybe 200,000 more recoverable with water injection
- * Don't drill \$30 MM injector

## Nordzee #1

- * Gas Well with Subsea Tree
- * "Single Zone"? reservoir, but with possible baffles
  - MDTs match gas gradient
- * Not fully cleaned-up during initial completion test


* Objectives:

- * Determine skin/perm
- * Determine in-place HCs
- * Estimate Recovery


### Nordzee #1 WBD

RT/TH HOP. : 73.675 r	Neble Al White //	OP-Rettage des TU	ANNULUS	1105.						
RI/TH HOP /3.6/31	I. NODIE AI WHITE (H	OF-Bolloming (H)		CIBRINE S	G 1.03					
COMPLETION DATE :										
	OLUMES		DRILLING D	EPTHS/RT						
7"Vam Top riser to RT TUBING VOLUME	volume	1.35 M3 15.67 M3	700 70 100	R HANGER :	0704.54	07				
4.5"LINER VOLUME		4.99 M3		1/2" LINER H						
3.5"x 7"ANNULUS VOI	UME till PKR	0.33 M3	TRSCSSV	olume 9000	>0 psi = ~2	50 ml (2 ree	s 200m)			
		API / 10000 psi rated working pre					· · · ·			15
TUBING HANGER X-MASTREE		FMC 13 5/8"x 4.5" w/ 3.925" S FMC JXT-3	RP PROFILE							
N-MASTREE PMV production maste	- unius	FMC JXT-3 5°1/8 10K								
PSV production swab v	alve	5"1/8 10K								
PMV production wing v		5"1/8 10K			length	To bottom o	ofitem			
Annullus valves		2"1/16 10K			ofitem				Original	
		STRING			Length	Depth	Depth	ID.	Drift	
ITEM QTY (	ESIGNATION		all length to b	bottom	m.	mRT	mŤH	inches	inches	11
1 1 TBG	HANGER 13"5/8 X	S" VAN TOP HC		HOP -	NAW	73.765	0.00	HOP	3,875"	/  ⊢
2 1 PUP.	IOINT 5" VAM TOP	HC 12.6# C-95 13%Cr PIN X PIN	N	HUF =	1.84	75.61	1.84	3,958"	drift	4 11
3 1 XO 4	5" VTOP box 12 6# 3	(3.5" VTOP 9.2# pin13% CR 1-8	0		0.95	76.56	2.79	3,958"	3,875"	
4 2 PUP.	IOINT 4"1/2 VAM TO	OP 12.6# C-95 13%Cr			6.40	82.96	9.19	3,958"	3,875"	
5 7 TUBI	ICC 4"1/2 VAM TOD	12.6# C-95 13%CR			90.31	173.27	99.50	3.958"	3,875"	
	100 H 1/2 VAINI TUP	12.0# 0-80 13 /sUR			30.31	113.21	88.00	3,808	3,615	
6 1 PUP.	IOINT 4"1/2 VAM TO	OP 12.6# C-95 13%Cr			1.96	175.23	101.46	3,958"	3,875"	
7 1 BAKE	R TME 6.5 TRSCS	V W/ NIPPLE ADAPTER 3.812	" BA PROFILE		2.03	177.26	103.49	3,812"	n/a	
8 1 PUP.	IOINT 4"1/2 VAM TO	OP 12.6# C-95 13%Cr		_	1.43	178.69	104.92	3,958"	2.867"	
	0.414.00.1/10.00	0.011.0.05.4001.55							Drift	
9 1 TUBI	IG 4"1/2 VAM TOP 1	2.0# C-95 13%CR			13.28	191.97	118.20	3,958"	Nylon	
10 1 PUP.	OINT 4"1/2 VAM TO	OP 12.6# C-95 13%Cr			1,96	193.93	120.16	3.958"		
11 1 XO 4.	5" VTOP box 12.6# >	3.5" VTOP 9.2# pin13% CR L-8	10		0.54	194.47	120.70	2.992"		
12 1 PUP.	OINT 3.5" VAMTOR	9.2# 13% CR L-80			1.48	195.95	122.18	2.992"	↓ I	
									2 867"	
13 255 TUBI	USS 3.5" VAMIOP 9	.2# 13% CR L-80 R-3			3171.67	3367.62	3293.85	2.992"	2.867"	
14 1 PUP.	OINT 3.5" VANTOR	9.2# 13% CR L-80			1.96	3369.58	3295.81	2.992"	2 867"	
		(3.5" VTOP 9.2# pin13% CR L-8	0		0.53	3370.11	3296.34	2.992"	2.867"	
16 1 PUP.	OINT 4"1/2 VAM TO	DP 12.6# C-95 13%Cr			2.96	3373.07	3299.30	2.992"	2.867"	1 11
	R SS-175GAUGE C				1.67	3374.74	3300.97	2.992"	2.867"	
		OP 12.6# C-95 13%Cr			1.92	3376.66 3377.19	3302.89 3303.42	2.992"	2.867"	4 11
		3.5" VTOP 9.2# pin13% CR L-8 9.2# 13% CR L-80	su		1.48	3377.19	3303.42	2.992	2.867	
21 1 TUBI	G 3.5" VAMTOP 9.2	# 13% CR L-80 R-3			12.50	3391.17	3317.40	2.992"	2.867"	
	OINT 3.5" VAMTOR				1.97	3393.14	3319.37	2.992"	2.867"	
23 1 BAKE	R 2.812" AOF NIPP	LE 9.2# VAMTOP 13%Cr L-80			0.69	3393.83	3320.06	2.81"	n/a	
24 1 PUP.	ioint 3.5" vamtor	9.2# 13% CR L-80			1.46	3395.29	3321.52	2.992"	2.867"	
		# 13% CR L-80 R-3			12.47	3407.76	3333.99	2.992"	2.867"	
	OINT 3.5" VAMTOR	3.5" VTOP 9.2# pin13% CR L-80	0		0.53	3409.73 3410.26	3335.96 3336.49	2.992"	2.867" 2.867"	/  ⊢
	R SB-3 PACKER	(3.5 VIOI 8.2# pilli3/8 OK E-6			1.21	3411.47	3337.70	2.992"	2.867"	
		OP 12.6# C-95 13%Cr			1.78	3413.25		2.992"	2.867"	
30 1 XO 4.	5" VTOP box 12.6# >	3.5" VTOP 9.2# pin13% CR L-8	0		0.53	3413.78	3340.01	2.992"	2.867"	
31 1 PUP.	IOINT 3.5" VAMTOR	9.2# 13% CR L-80			1.48	3415.26	3341.49	2.992"	2.867"	
32 1 TUBI 33 1 PUP	IG 3.5" VAMTOP 9.2 IOINT 3.5" VAMTOP	# 13% CR L-80 R-3			12.50	3427.76 3429.73	3353.99 3355.96	2.992"	2.867" 2.867"	
		LE 9.2# VAMTOP 13%Cr L-80			0.98	3429.73	3355.90	2.992	2.807 n/a	⊢
35 1 PUP	IOINT 3.5" VAMTOR	9.2# 13% CR L-80			1.47	3432.18	3358.41		2.867"	/  ⊩
36 1 PUP.	IOINT 3.5" VAMTOR	9.2#13% CR L-80			1.92	3434.10	3360.33	2.992"	2.867"	
37 1 XO 3.	5" VTOP BOX 9.2# 1	3% CR L-80 x 4.5" VTOP pin 12			0.53	3434.63	3360.86		2.867"	
38 1 SELF	ALIGNING MULE S	HOE 4"1/2 VAM TOP 12,6# L-8	0 13%CR 20FT		4.56	3439.19	3365.42	2.992"	2.867"	
				IN PBR	2.03	<ul> <li>3441.22</li> </ul>	3367.45	2.992"	2.867"	
										1 F
					1					
	LINED 12.84 1 00					2420.40		2.050		
	LINER, 12.6#, L-80, PUR joint 2952 42	m RT - 3854.38 m RT for correl	lation			3439.10		3,958"		
4-1/2	1 of joint 3632.43	in ter - 3034.30 in ter tof correl	auvil		<u> </u>					
4 1/2	LANDING COLLAR					ŧ	4067.14	mRT		
Perforations				Net Interval						
	orforated from '	08 till Jan 10 2013				NOT NORM	CLASSIFI	ED		
	erforated from Jan 879 - 3885 mRT	08 till Jan 10 2013 3805.25 - 3811.13	mTH	6m	6 spf	Deviation @	h nacker de	oth	34	degrees
	923 - 3933 mRT	3849.13 - 3859.13		10m	6 spf	Deviation @	D reservoir			degrees
	949 - 3959 mRT	3875.13 - 3885.13		10m	12 spf					-0
-			-			I				

## Nordzee #1 - Logs



# Nordzee #1 Full Logs



# Nordzee Summary

	Y PBU DD PTA/P	roductivity HC Volumes P/z	Derivat	ive OilWate	erRates An	alysis Event	s															
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	QGasi Mcf/D	QGas Mcf/D	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/MMcf	Report Link	Graph Link		
	17Aug2013 22:29:53	18Aug2013 00:17:53	1.8	PBU	4371	4587	5498	5598	5650	5745	13299	13299	119	20.3	80	5769	26	6.04	INTRop 2012Aug17 2220	Nordzee-		
		18Aug2013 04:35:53	1.3	PBU	3991	4533	5354	5558	5519	5704	24765	24765	123.8	26.1	185	5770	22	7.46		107000 201200019 0217		
		18Aug2013 08:47:53	4.2	DD	1699	4077	5604	5378	5751	5540		20196	2.2					-73.81	Nordzee- 10.000 2012Aug19 0425	Nordzee- IBTRos 2012Aug19 0425		
	······	09Sep2013 15:18:53	45.4	PBU	3624	4214	4953		5113		25141		86	12.1	125		37	4.99	INTRop 201250007 1754	Nordzee- 10TDop 201250007 1754		
		19Sep2013 13:28:53	3.8	PBU	3591	4136	4845		5000			23108	82.7	10.5		5200		4.54	10 Then 20125ep10, 0040 Nordzee-	IDTDop 20125op10_0040 Nordzee-		
	· · · · · · · · · · · · · · · · · · ·	22Sep2013 11:35:53	8.02	PBU PBU	3514	3874	4795		4951 4589			24013	NaN 96.9	NaN 14	NaN 176			NaN	10TDop 201250p22 0224	10TBon 2012Eon22 0224 Nordzee-		
		09Oct2013 06:29:53 09Oct2013 17:44:53	1.45 7.95	PBU	2870 3735	3709 3776	4425 4729	4723 4697	4589	4855		30333 3718	86.8 NaN	14 NaN	NaN		33 NaN	8,6 NaN	10 Thop 20120ct00 0502 Nordzee-	10TDop 20120ct00_0502 Nordzee-		
	090002013 09.47:53	090012013 17.44:53	7.90	PDU	3733	3770	4729	4097	4003	4029	3718	3718	INdiN	INdiN	INdiN	4032	INdIN	NaN	1010200 0047	10T0cs 20120ck00 0047		
				ate Created	1: 11/26/20	13 8:55:4	5 AM						7		r				Date Created: 11/2	6/2013 8:55:45 AM		200
0	WHP D	HGP BHP	Qgas										-	6000-	W	HP	DHGP	BHF	Qgas			
	E.					1					1					94			1			
											j		-30000	5500-	E					. hl		•
	£	 		<u> </u>		L.					j			5000-	E	15		-11	h l	~~1 la ~~	m la company	
,	F 🔁										<u> </u>		-	5000	=		$\mathcal{L}$			_		~
)													-25000	4500-	E	4		<u> </u>	·····			
	E					÷									E		1					
)													-	4000-	E							Ξ
	EP										1		-20000		E	1 m						
)		!												3500-	E							
)	E.										į		3	< 3000-	E		į.		····· /			
	╘┤┝╼╲╌╌╴┤					-					1		-15000 ²	¥ 3000-	E					y man		
)											+		-	2500-	E							
	E										1		1		F		1	- 11				
D													10000	2000-		• • • • • • •						• - •
	E												-10000	1500	E III							
)	E										]			1500-	E							
D	F	į.												1000-	E							
	E	i i									1	-	-5000		Ē							
0	╶╪╶╟┾╴╴╴╴╴╴╴╴													500-	<u></u>							
	E					1					1				E		1					
ľ	+					·					 		-0	0-	╞╴╴╝╾╾║	WU		k				•
	15 T Oct 2013	ue 22 Tu	e		-Time - Dat	1 Fri		8 Fri		1	5 Fri				)13		Sep		Oc Date-Time -		Nov	

# Nordzee Productivity

x64 Well Analyzer - C:\WORK\RT Software Demos\	NordZee #1 Ex.ProD	ata - [Real Time Testing]							- 0 - X
<u>File Memory Analysis Plot View Transport</u>									- 9
nputs Summary Outputs									
Summary PBU DD PTA/Productivity HC Vo	olumes P/z Deri	ivative OilWaterRates Analysis Events							
Initial Pres (PSIA)	0								
Last PBU DPskin/Q (PSI/(MMCF/D))	NaN	10/09/2013 17:44:53	•						
Last DD DPskin/Q (PSI/(MMCF/D))	-73.81	08/18/2013 08:47:53	•						
Last P* (PSIA)	4852	10/09/2013 17:44:53	•						
Last Productivity Q/DP (MCF/D/PSI)	14.9	11/19/2013 09:09:53	•						
Last TTA (PSI/(MMCF/D))	67.29	11/19/2013 09:09:53	•						
		Date Created: 11/26/2013 8:55:45 AM				Date Creat	ed: 11/26/2013 8:55:45 AM		
Productivity Qgas			1	-	CTA Qgas		1	1	-
				-32000 65-	- <b> </b>				32000
80									
		Δ.	1				۸.		
70		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		30000 55-			× 14		
									-
60		June V	$\mathbf{X}$	29000 50·			May a straight		
			w	45	[ <b> </b>		,, <u>/</u>	<u>W</u>	
			New Street	28000 MGF/W/					-28000
50		····· <b>N</b>	~~~~	MCF/D		~	//		
			Nr.	27000 2 35	[ <b>\</b>				= 27000
40								l h	
·			1	-26000 30		/			
30			1	2525000	X				
-		Mm -		1					-2300
	~			20-		1 2			
20	~			15-	<u>↓</u>	·· <b>∕</b> [-			
	M.	$\sim$		-23000		~ ~			-23000
Sep		Oct Date-Time - DateTime	Nov	10-	Sep		Oct -Time - DateTime	Nov	
2013		Date-Time - DateTime		2	013	Date	-Time - DateTime		
		14	Go Go	Pause	Auto Restart	SaveDTColumn			Cancel
dy				142					

# Nordzee – Running MBAL/EBAL

x64ODSI-Well Analyzer - C:\WOR

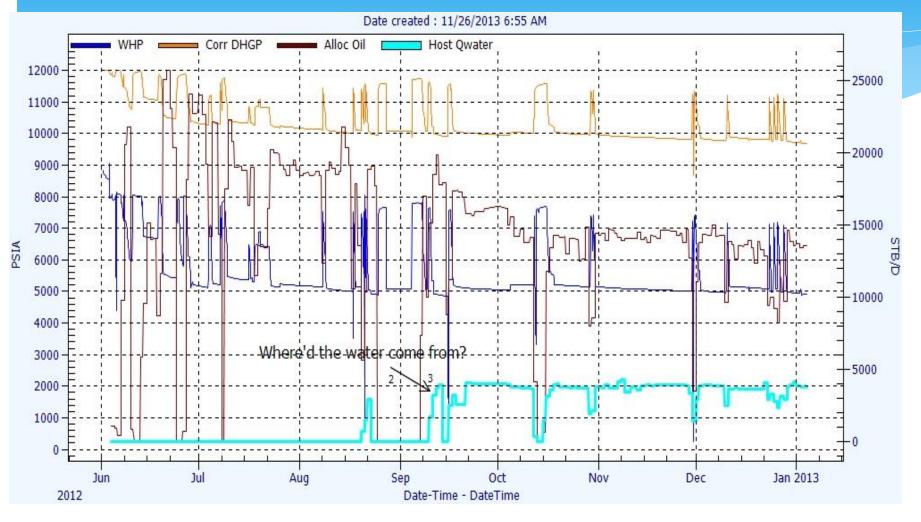
Ready

- 0 X

mary PBU DD PT	A/ Productivity	HC Volumes	P/z	Derivative Oi	WaterRates	Analysis Events									
te Time	Gas Produced	PBU Duration	Pres	z-Factor	P/z	GIP SLD @P=0	GIP SLD @P ab=15	GIP P/z @P=0	GIP P/z @P/z ab=15	GIP P/z geo @P=0	GIP P/z geo @P/z ab=15	m Pres	m Pz	m Pz Geo	
1/dd/yyyy HH:mm:ss	BCF	HOURS	PSIA	dimless	PSIA	BCF	BCF	BCF	BCF	BCF	BCF	PSIA/BCF	PSIA/BCF	PSIA/BC	
/01/0001 00:00:0	0.000		5775	1.093	5283.2										
/18/2013 00:05:53	0.008	2	5770	1.093	5280.21										
/18/2013 04:29:53	0.011	1	5770	1.093	5280.63										
/09/2013 15:18:53	0.560	45	5361	1.063	5041.18					·····					
/19/2013 13:28:53	0.786	4	5200	1.052	4941.92										
22/2013 11:35:53	0.848	8	5166	1.050	4920.79										
09/2013 06:29:53	1.304	1	4892	1.031	4743.08										
D/z Droc						linear Dres	Linear D/z Goo	P/z Geo	D/z ph		Conv SI D+GP	Conv Vc+GP		2014 4:53:01 PM	
💌 P/z 🔺 Pres	P/z(sn	oru) 💌 P	res(short)	Line	ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab		Conv SLD+GP	Conv Vc+GP	TTA SLD+GP	TTA Vc+GP	GP EUR
	P/Z(sn	ort) [ <b>•</b> ] P		Line	ar P/z	Linear Pres	— Linear P/z Geo	P/z Geo	P/z ab	18	onv SLD+GP	Conv Vc+GP	TTA SLD+GP	TTA Vc+GP	GP EUR
	P/z(sn	orc) (• P		Une		Linear Pres	Linear P/z Geo	P/z Geo	P/z ab		onv SLD+GP	Conv Vc+GP	TTA SLD+GP =	TTA Vc+GP	GP — EUR
00 Pab 00 00 00 00 00 00 00 00 00 00 00 00 00	P/z(sn			Line	ear P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18		Conv Vc+GP		TTA VC+GP	GP EUR
00 Pab	P/z(sn				ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18	onv SLD+GP	Conv Vc+GP	TTA SLD+GP		GP EUR
00 Pab. 00	P/2(sn				ar P/z ■	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			
00 - Pab.	P/2(sn				ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			
000 Pab. 000	P/2(sn			Line	ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			GP - EUR
900 Pab. 500 500 500 500	P/Z(sn				▼	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			GP EUR
900 - Pab. 900 - Pab. 900	• • • / 2(sn				ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			
900 Pab. 500 500 500 500 500					ar P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12	prv SLD+GP	Conv Vc+GP			GP EUR
					■	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12	priv SLD+GP	Conv Vc+GP			GP EUR
					■	Linear Pres	Linear P/z Geo	P/z Geo	• P/z ab	18 16 14 12		Conv Vc+GP			GP - EUR
					¥	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab	18 16 14 12		Conv Vc+GP			GP - EUR
000 Pab. 000					ar P/2	Linear Pres	Linear P/z Geo	P/z Geo		18 16 14 12	I Sun 85			ТТА VC+GP	CP EUR

## Nordzee - Conclusion

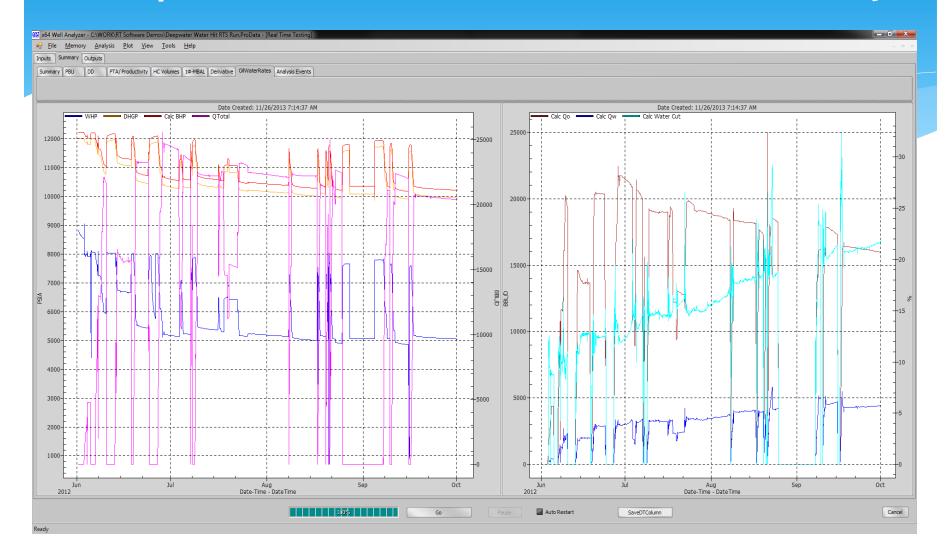
- Early PBUs occurred when well was still cleaning up accurate for what was flowing at the time, but not whole zone
- * No good drawdowns
- * PBU perms around 85 md, with a skin around 13
- * Apparently 15 BCF hydraulically connected
- * At least 8 BCF recoverable


### Deepwater Oil Well (Water?)

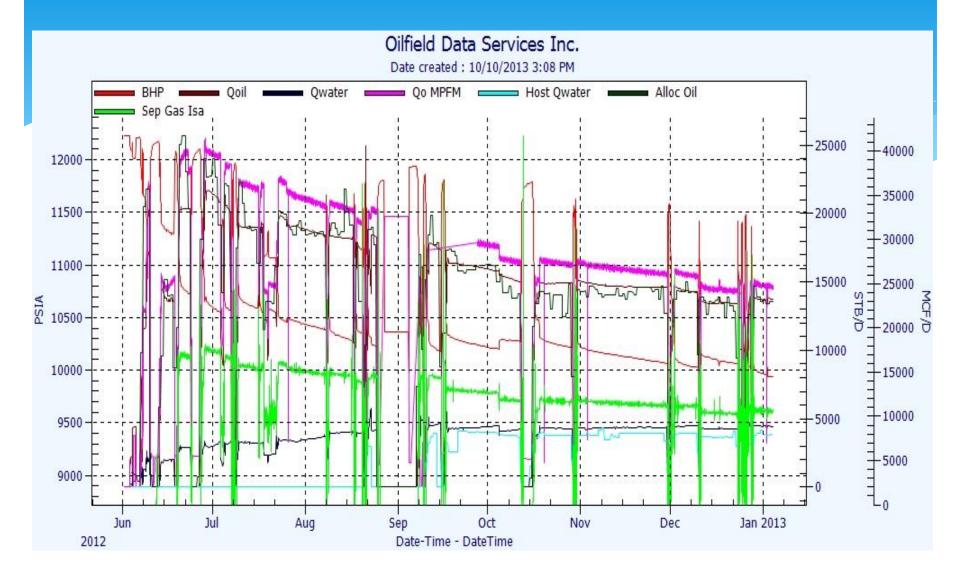
 Start-up of New Deepwater Well (subsea)
 After just 3 months of Production, the well started making 4000 STB/D of WATER!

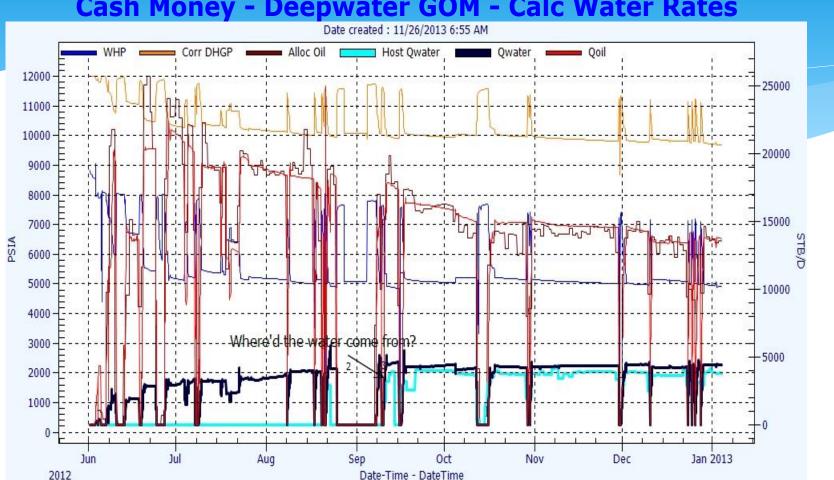
Objectives:

- 1) Find out where the water's coming from
- 2) See if it justifies a work-over


#### **Deepwater Oil – Allocated Rates**

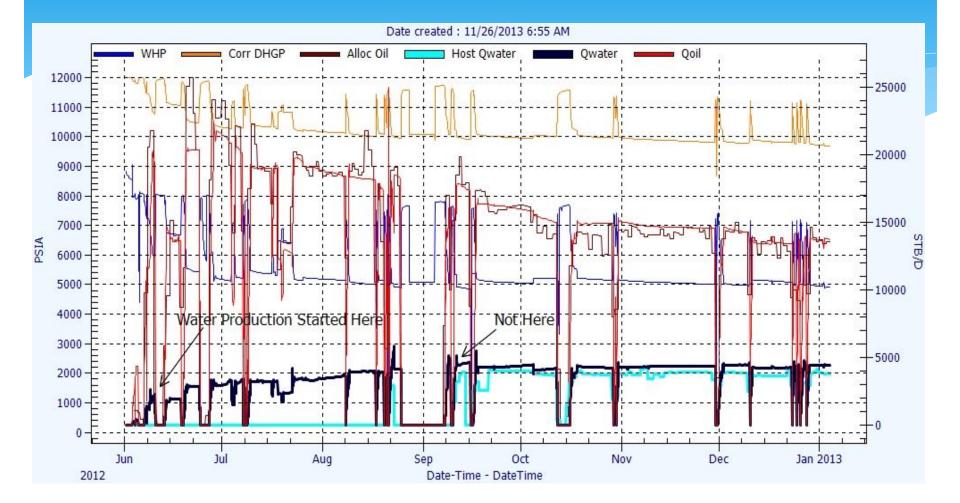



#### Deepwater Oil - WBS


Description	Depth (MD)	Depth (TVD)	Length (Pipe)	OD (Pipe)	ID (Drift)	
(Deturn for measurements are from top) Companys 15kms) Turbing Hanger		(TVD)	(Pipe)			
Cameron 15kpsi Tubing Hanger Correction from E-Line to Production Tubing	6,503	6,503	1.13	17.305	4.607	
5 1/2" 28.0# Vam Top HC Inc 13Cr/05 pup joint, PxP	6,508	-	5.52	5.500	4.670	
5 1/2" 28.0# Van Top HC Inc 13Cr/05 pup joint, BxP	6.512	-	3.41	5.500	4.670	16" Rupture Disk @ 7,524' MD/TVD
5 1/2" 28.0# VTKP x 23.0# VTHC 13Cr85 Timed pup joint, BxP	6,515		8.34	5.500	4.670	
5 1/2" 23.0# Vam Top HC 13Cr 95 kal tubing, BxP	6,524		2,983.91	5.500	4.670	
5 1/2" 23.0# Vam Top HC 13Cr 95 coupling, BxB	9,507		0.90		4.670	SCSSV
Methanol Inhibition mandrel 5-1/2" 23# Vam Top HC, PxP	9,508	9,508	5.94		4.560	16" Rupture Disk @ 9,010' MD/TVD
5 1/2" 23.0# Vam Top HC 13Cr 95 Timed pup joint, BxP	9,514		6.43	5.500	4.670	TOC @ 9,750' MD/TVD
X-over, 5-1/2" 23# VTHC x 4-1/2" 15.1# Vem Top, 13Cr05, BxP	9,521		2.64	5.500	4.670	10 344" x 9 7/8" 10 718" MD/TVD
Plow Coupling, 4 1/2" 15.1# Vam Top 13Cr 95 BxB	9,523		6.52		3.798	
SCSSV, Neptune 4-1/2" 15.1# Vam Top, w/ 3.888" R nipple PxP           Prov Coupling, 4 1/2" 15.1# Vam Top 13Cr 95 BxP	9,530	9,529	14.39	7.400	3.688	Completion Fluid
	9,544	<u> </u>	14.55		3.809	Kill Weight Fluid: 12.8 ppg CeC
4 1/2" 15.1# Vam Top 13Cr 95 pup joint, 8xP     4 1/2" 15.1# Vam Top 13Cr 95 tubing, 8xP	9,565		14.55	4.500	3.828	Packer Fluid: 12.8 ppg CaCl.
5 4 1/2" 15 1# Vam Top 13Cr 95 public, 80	18,218		10.94	4.500	3.826	w/Corrosion Inhibitor
18 DHPT Gauge Mandrel w/ Triple PQG gauges, PxP	18,228	18,169	8.15	7.451	3.760	16" Rupture Disk @ 11,018' MD/TVD
17 4 1/2" 15 1# Vam Top 13Cr 95 Timed pup joint, BxB	18.237		8.92	4.500	3.789	TOC @ 11,737 MD/TVD
18 DHPT Gauge Mandrel w/ Triple PQG gauges, PxP	18,248	18,185	8.15	7.451	3.760	
9 4 1/2" 15.1# Vam Top 13Cr 95 Timed pup joint, BxB	18,254		6.93	4.500	3.828	Control Lines
20 Deep Scale Inhibition Mandrel 4 1/2" 15.1# Vam Top, PxP	18,261		5.39		3,782	(1) 30° Scale inhibitor line (2) 14° SCSSV line
21 4 1/2" 15.1# Vam Top 13Cr 95 Timed pup joint, BxB	18,298			4.500		(1) 30" Asphaltene inhibitor in
22 Deep Asphaltene Inhibition Mandrel 4 1/2* 15.1# Vam Top, PxP	18,273	18,210	5.39	6.398	3.762	(2) 1/4" TEC lines (1) 1/2" Methanol line
23 4 1/2* 15.1# Vem Top 13Cr 95 pup joint, BxP	18,278		6.32	4.500	3.828	
24 4 1/2" 15.1# Vem Top 13Cr 95 tubing, BxP (cut joint)	18,285	<u> </u>	37.48	4.500	3.828	TOC @ 12,303' MD/TVD
25 4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,322	<u> </u>	10.30	4.500	3.828	Production Tubing
28 Row Coupling, 4 1/2" 15.1# Vam Top 13Cr 85, BuP 77 "R" Landing Nimple, 4 1/2" 15.1# Vam Top 925, BvP	18,332	10.000	5.89	5.087	3.808	5-1/2* 23# 13Cr85 Vem Top
	18,338	18,269	5.90	5.045	3.668	ID 4.87", Dift 4.545" Coupling 4 1/2" 15 1# 13Cr85 Vam T
28 Flow Coupling, 4 1/2" 15.1# Vam Top 13Cr 85, BxP 29 4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,340	<u> </u>	6.35		3.808	4 1/2" 15.1# 13Cr/6 Vam 1 ID 3.826" Drift 3.701" Coupling O
20 4 1/2" 15.1# Vani Top 13Cr 95 pup joint, 60P 30 4 1/2" 15.1# Vani Top 13Cr 95 pup joint, 60P	18,340	<u> </u>	10.21		3.789	in a state still a store coupling o
1 HNT Production Packer, 4 1/2" 15.1# Vam Top, BxP	18,362	18,291	10.37	8.303	3.788	
22 Flow Coupling, 4 1/2" 15.1# Vem Top 13Cr 85, BxP	18.372		5.88		3,811	KOP @ 16,763' MD (16,753' TVD)
33 "R" Landing Nipple, 4 1/2" 15.18 Alloy 725/120 Vam Top, BxP	18,378	18,305	1.30	5.042	3.688	
How Coupling, 4 1/2" 15.1# Vam Top 13Cr 85, BxP	18,380		5.88	5.084	3.811	
35 4 1/2" 15.1# Vam Top 13Cr 95 perforated pup joint, BxP	18,385		6.32	4.500	3.794	Production Casing
6 4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,392		10.33	4.500	3.789	10 3/4" 73.2# Q-125 HW-8T
7 X-over, 4 1/2" 15.1# Vam Top Pin x 6 5/8" 32# VTKP SC-80 Box	18,402		2.04	6.676	3.790	ID 9.408", Dift 9.250"
85 8 5/8" 32# Vam Top KP SC-80, BxP, 13Cr85 tubing, LSOTJ	18,404		41.12	6.635	5.635	9 7/8" 62.8# HCQ-125 Vam Top ID 8.625", Dift 8.500"
6 5/6" 32# Vem Top KP SC-80, BxP, 13Cr85 tubing, LSOTJ	18,445		81.53	6.635	5.635	
43 6 5/8" 32# Vam Top KP SC-80, BxP, 13Cr85, pup joint, LSOTJ	18,527	<u> </u>	10.43	6.635	5.635	
LSOTJ metered (Outer Upper Assembly)     LSOTJ metered (Outer Lower Assembly)	18,537	<u> </u>	1.20	7.420	5.070	
<ol> <li>LSOTJ metered (Outer Lower Assembly)</li> <li>End of LSOTJ Assembly</li> </ol>	18,508	<u> </u>	4.10	7.420	5.070	
5 neck of telescoping assembly joint- Stroke begins	10,040		0.98	4.529	3.804	
4 1/2" 15.1# Van FJL BrP, 13Cr95 production tubing	18,480	-	82.10	4 520	3.804	
7 4 1/2" 15 1# Vam FJL BaP, 13Cr95 production tubing	18.571		41.08	4.520	3.804	- B
18 X-over pup, 4 1/2" 15.1# Vem FJL Box x Vem Top Pin, 13Cr95	18.612		9.88	4.529	3,804	
4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,622		10.23	4.500	3.790	
50 Flow Coupling, 4 1/2" 15.1# Vam Top 13Cr 85, BxP	18,632		5.89	5.042	3.798	
1 "R" Landing Nipple, 4 1/2" 15.1# Alloy 725/120 Vam Top, BxP	18,638	18,541	1.20	5.060	3.688	
2 Flow Coupling, 4 1/2" 15.1# Vem Top 13Cr 85, BxP	18,639		5.89		3.809	
53 4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,645	L	6.32	4.500	3.790	LIOTA
54 4 1/2" 15.1# Vam Top 13Cr 95 pup joint, BxP	18,651		8.31		3.793	
55 PFZ Ratchet latch Locator, 4 1/2" 15.1# Vam Top, 925 MSH Molded HNBR Seal Linit, 5 1/2" 20# Vam Top KP SC-80, ReP, 925	18,660	18,561	2.06 6.26	6,819	3.793 4.783	
56         MSH Molded HNBR Seal Unit, 5 1/2" 20# Vam Top KP SC-80, BxP, 925           57         Seal Extension, 5 1/2" 20# Vam Top KP SC-80 BxP, 925	18,002		8.04	5,980	4.763	3
57 Sear Extension, 5 172° 204 Vam Top KP SC-80 8xP, 925 58 MSH Molded HNBR Seal Unit, 5 1/2° 204 Vam Top KP SC-80, BaP, 925	18,008		6.26	6.000	4.763	
50 Seal Extension, 5 1/2" 20# Vam Top KP SC-80 BxP, 925	18,682		8.04	5.980	4.768	
80 Sbg Self Aligning Mule Shoe, 5 1/2" 20# Vam Top KP SC-80 BM-, 925	18,690		3.51	5.946	4.766	
1 End of Mule Shoe	18,694					
22 Completion Assembly						
HES VCA Versa-Trieve 12.5k GP Packer, 718, HNBR	18,659	18,561	14.64	8.305	6.000	
HES Circ. Housing w/ MCS closure sleeve	18,674		6.48	8.300	6.000	
5 X-over, 7 5/8" 42.8# AB-HDL Box x 5 1/2" 23# Vam Top HC Pin, 925	18,681		25.08		6.010	
8 5 1/2" 23# Vem Top HC BxP Make-up sub, Inc 925	18,708		3.58	7.247	4.590	
5 1/2" 23# Vam Top HC BxP pup joint, 13Cr85	18,709		4.18	5.508	4.589	
5 1/2" 23# Vam Top HC BxP pup joint, 13Cr85	18,713		8.42	5.508	4.589	
FS-2 Formation Isolation Valve 5 1/2" 23# Inc 718 Vam Top HC	18,722	18,617	17.00	8.010	3.870	
0 51/2" 23# Vem Top HC BxP pup joint, 13Cr85	18,739	<u> </u>		5.508	4.589	
	18,745	I	8.34	5.508	4.597	
72 5 1/2" 23# Vam Top HC, MJS. Shear Sub, (90K shear), Inc 925 BoP	18,754	<u> </u>	8.35		4.612	
73 5 1/2" 23# Van Top HC BxP pup joint, 13Cr85	18,758	<u> </u>		5.508		
74 5 1/2" 23# 13Cr85 Vam Top HC Blank Pipe w/ Centralizers 75 5 1/2" 23# 13Cr85 Vam Top HC Premium Screen 175 mesh	18,763	<u> </u>	88.98		4.612	
6 Top Snap, 51/2" 23# Vam Top HC Premum Screen 1/5 meen 76 Top Snap, 51/2" 23# Vam Top HC Box x 17# Vam Top SC80 Pin	18,970	18.842	120.40	8,185	4.512	
77 HMBR Seal assembly w/ self aligning shoe 190/80	18.971	-	42.84	5.950	4.875	
7 PMbh Seal assembly wriser aigning shoe 130/80 78 End of Guide Shoe	19,014		74.04	0.450	4.070	
Per character character character	10000			<u> </u>	<u> </u>	45340 200004 20
30 Sump Packer Assembly (Wireline Set)						のないので
Sump Packer, (HMBR) w/ mule shoe	18,970	18,842	6.77	8.310	6.000	RA Tag —
2 Bottom of Packer	18,977					
1						<b>新新市会社</b>
		18,942				
34 Steel Bridge Plug	19,080					
		18,957			17200	TS Hope

#### Deepwater Oil – Calc Rates Summary




#### **Cash Money #2 - Deepwater Rates & BHPs**





#### **Cash Money - Deepwater GOM - Calc Water Rates**

#### When did the Water Production Begin???



151

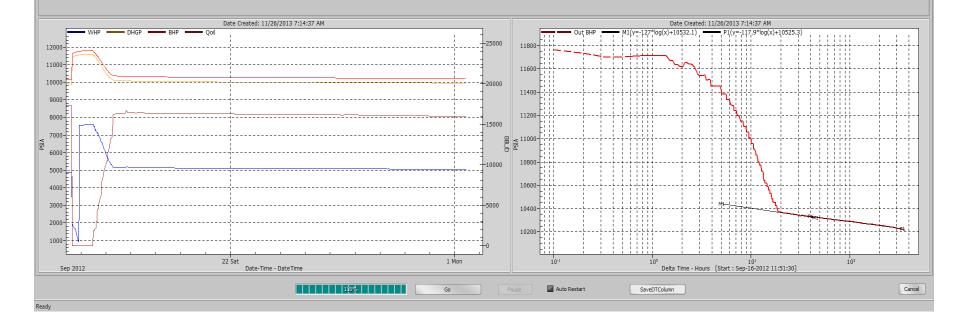
# YES... ALLOCATIONS REALLY ARE THIS BAD!!

#### Deepwater Oil – RTS Summary

	ry Outputs																				
y	PBU DD PTA/P	roductivity HC Volumes 1Φ-	MBAL Deriv	ative OilWa	terRates A	nalysis Even	its														
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	Qoil_i BBL/D	Qoil BBL/D	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/BBL	Report Link	Graph Link	
	05Jun2012 10:24:00	06Jun2012 22:56:00	36.53	PBU	7915	8063	11803	12011	12010	12221	4380	4380	447.2	0.8	21	12241	88	0	RTRep 2012Jun05 10240	RTRep 2012Jun05 10240	
	10Jun2012 10:44:00	13Jun2012 07:11:00	68.45	PBU	5923	8032	10769	11973	11027	12183	19303	19303	486	3.3	335	12283	65	0.02	RTRep 2012Jun10 10440	RTRep 2012Jun10 10440	
	18Jun2012 13:05:00	19Jun2012 04:11:00	15.1	PBU	6665	8032	11058	11890	11293	12095	13665	13665	244.2	-1.6	-220	12271	135	-0.02	RTRep 2012Jun18 13050	RTRep 2012Jun18 13050	
	19Jun2012 04:11:00	24Jun2012 07:37:00	123.43	DD	8030	7188	11888	11290	12094	11509	0	20300	106.1	-4.6	-2191	10558	582	-0.11	RTRep 2012Jun19 04110	RTRep 2012Jun19 04110	
	24Jun2012 07:37:00	27Jun2012 00:33:00	64.93	PBU	7189	8021	11290	11898	11509	12105	9070	9070	358.4	0.6	39	12245	91	0	RTRep 2012Jun24 07370	RTRep 2012Jun24 07370	
	27Jun2012 00:33:00	03Jul2012 20:48:00	164.25	DD	8021	5126	11898	10273	12105	10547	0	17402	48.2	-5.6	-5243	10385	1389	-0.3	RTRep 2012Jun27 00330		
	08Jul2012 03:20:00	08Jul2012 23:54:00	20.57	PBU	6089	7917	10711	11777	10957	11983	15631	15631	522.6	5.6	426	12145	53	0.03	RTRep 2012Jul08 03200	RTRep 2012Jul08 03200	
	08Jul2012 23:54:00	16Jul2012 10:05:00	178.18	DD	7916	5365	11776	10320	11982	10584	0	19148	311.8	0.8	125	10497	88	0.01	RTRep 2012Jul08 23540	RTRep 2012Jul08 23540	
	20Aug2012 19:59:30	21Aug2012 07:59:30	12	PBU	5533	7700	10306	11589	10560	11796	15579	15579	241.4	0.4	63	12034	94	0	RTRep 2012Auq20 19593		
ļ	21Aug2012 10:33:30	25Aug2012 06:29:30	91.93	2-Rate	7255	4891	11296	9939	11511	10208	3207	13735	231.6	0.5	77	11280	92	0.01	RTRep 2012Aug21 10333		
	25Aug2012 06:29:30	07Sep2012 13:14:30	318.75	PBU	4894	7805	9940	11731	10209	11940	18213	18213	614.6	13	981	11996	33	0.05	RTRep 2012Aug25 06293	RTRep 2012Aug25 06293	
	09Sep2012 15:10:30	10Sep2012 04:08:30	12.97	PBU	5043	7635	10044	11652	10310	11867	16157	16157	589.8	14.2	1008	12028	31	0.06	RTRep 2012Sep09 15103		
		**** *********	~7 40			E100	11000	10001	11001	10000	^	15000	100 1	~ 7		0001	100	0 0F	DTDop 2012Cop10 04002		
													-25000	12000	Ei	KA.	AF		К.,		FIN A
													-20000	12000 11000 10000 9000 8000							
)))))))														11000 10000 9000 8000 7000 6000							
													-20000 -15000 -10000	11000 9000 8000 7000 6000 5000 4000							
													-20000 -15000	11000 9000 8000 7000 6000 5000 4000 3000 2000							
													-20000 -15000 -10000	11000 9000 8000 5000 5000 4000 3000							
0-				Sat									-20000 -15000 -10000	11000 9000 8000 7000 6000 5000 4000 3000 2000							

#### **Deepwater Oil – PBU Summary**

_ 6 _


#### 🥨 x64 Well Analyzer - C:\WORK\RT Software Demos\Deepwater Water Hit RTS Run.ProData - [Real Time Testing

🖳 File Memory Analysis Plot View Tools Help

Inputs Summary Outputs

Summary PBU DD PTA/Productivity HC Volumes 10-MBAL Derivative OlWaterRates Analysis Events

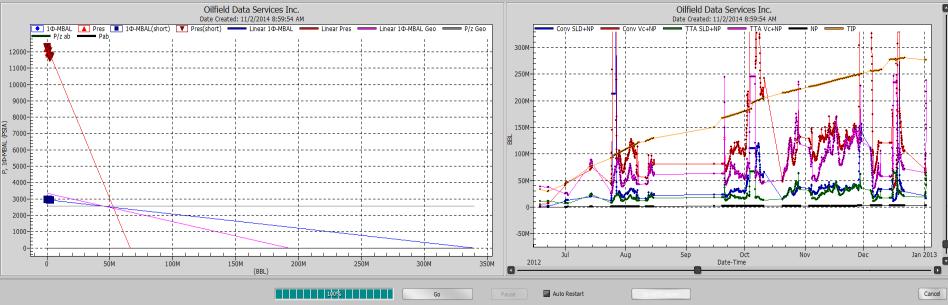
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	Qoil_i BBL/D	Qoil BBL/D	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/BBL	Report Link	Graph Link
1	05Jun2012 10:24:00	06Jun2012 22:56:00	36.53	PBU	7915	8063	11803	12011	12010	12221	4380	4380	447.2	0.8	21	12241	88	0	RTRep 2012Jun05 10240	RTRep 2012Jun05 10240
2	10Jun2012 10:44:00	13Jun2012 07:11:00	68.45	PBU	5923	8032	10769	11973	11027	12183	19303	19303	486	3.3	335	12283	65	0.02	RTRep 2012Jun10 10440	RTRep 2012Jun10 10440
3	18Jun2012 13:05:00	19Jun2012 04:11:00	15.1	PBU	6665	8032	11058	11890	11293	12095	13665	13665	244.2	-1.6	-220	12271	135	-0.02	RTRep 2012Jun18 13050	RTRep 2012Jun18 13050
4	24Jun2012 07:37:00	27Jun2012 00:33:00	64.93	PBU	7189	8021	11290	11898	11509	12105	9070	9070	358.4	0.6	39	12245	91	0	RTRep 2012Jun24 07370	RTRep 2012Jun24 07370
5	08Jul2012 03:20:00	08Jul2012 23:54:00	20.57	PBU	6089	7917	10711	11777	10957	11983	15631	15631	522.6	5.6	426	12145	53	0.03	RTRep 2012Julo8 03200	RTRep 2012Julo8 03200
6	20Aug2012 19:59:30	21Aug2012 07:59:30	12	PBU	5533	7700	10306	11589	10560	11796	15579	15579	241.4	0.4	63	12034	94	0	RTRep 2012Auq20 19593	RTRep 2012Auq20 19593
7	25Aug2012 06:29:30	07Sep2012 13:14:30	318.75	PBU	4894	7805	9940	11731	10209	11940	18213	18213	614.6	13	981	11996	33	0.05	RTRep 2012Aug25 06293	RTRep 2012Aug25 06293
8	09Sep2012 15:10:30	10Sep2012 04:08:30	12.97	PBU	5043	7635	10044	11652	10310	11867	16157	16157	589.8	14.2	1008	12028	31	0.06	RTRep 20125ep09 15103	RTRep 20125ep09 15103
9	15Sep2012 15:23:30	16Sep2012 11:51:30	20.47	PBU	4852	7608	9903	11605	10172	11818	17270	17270	389.6	6.8	774	12005	48	0.04	RTRep 2012Sep15 15233	RTRep 2012Sep15 15233



#### Deepwater Oil – DD Summary

	Summary Outputs																					
)	y PBU DD PTA/F	Productivity HC Volumes 10	-MBAL Deri	vative OilWa	aterRates	Analysis Ev	ents															
	Start D/T ddMmmyyyy hh:mm:ss	End D/T ddMmmyyyy hh:mm:ss	Test Length Hours	Test Type	WHPi psia	WHPf psia	DHGPi psia	DHGPf psia	BHPi psia	BHPf psia	Qoil_i BBL/D	Qoil BBL/D	Perm md	Skin	DPskin psi	PStar psia	PI Eff %	DPs/Q psi/BBL	Report Link	Graph Link		
		24Jun2012 07:37:00 03Jul2012 20:48:00		DD DD	8030 8021	7188 5126	11888 11898	11290 10273	12094 12105	11509 10547		20300				10558 10385	582 1389		RTRep 2012Jun19 04110	RTRep 2012Jun19 04110 0 US DD inc RTRep 2012Jun27 00330		
	08Jul2012 23:54:00	<u></u>			7916	5365			11982			19148		0.8		10497	88		RTRep 2012Jul08 23540	O LIC DD CDD ing		
	21Aug2012 10:33:30	25Aug2012 06:29:30	91.93	2-Rate	7255	4891	11296	9939	11511	10208	3207	13735	231.6	0.5	77	11280	92		RTRep 2012Aug21 10333	RTRep 2012Aug21 10333		
		11Sep2012 07:33:30			7671		11652		11864	10360		15836		-2.7		9881	188			RTRep 20125ep10 04083		
	16Sep2012 11:51:30	01Oct2012 11:18:30	359.45	DD	7608	5048	11605	9953	11818	10215	0	16325	358.8	5.4	600	10172	53	0.04	RTRep 20125ep16 11513	RTRep 20125ep16 11513		
				Date Created	d: 11/26/2	013 7:14:	37 AM													26/2013 7:14:37 AM		
	E	DHGP BHP	- Qoil	1								1				- Out Bi	IP	1 1 1 1	11 1 1 1	P1(y=-117.9*log(x)+10525.		
ſ														11800				+ - +	11 1 1 1	-ll- + -l-ll 		++-
)(	0-E\ <del>\</del>												-	11600								
)(	, []											<u></u>							11 I I I <b>1</b> 1			
	E												-20000	11400	-       - -¦-¦-¦-				++++++++++++++	<b>↓</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
)(															Ett			1 1 1 1	11 1 1 1	1 <b>%</b> [::::		
)(	ر <u>س</u> ے													11200	┝┥╬╸╠╠╸╺╵ ┍╷╷╷╷		++-	• + - + - + - +	++++++++++++++			
)(	,EL												-15000					1 1 1 1		111 <b>1</b>		
	EL \													11000 A				1111		····		
	⁰==\												-	10800	Ett.				11 1 1 1	<b>\</b>	· · · · · · · · · · · · · · · · · · ·	
)(	₀┋┼╌╌╌┼╌╌╌╴												+10000	10000					11 1 1 1			
	. El												-	10600	-i i i 			+-+-+	+++++	<b>-</b>		
00	EL /												-		E					111111 1		
00	0												-5000	10400	┥┥┾┝╺╶			· + - +	+++++++++++++-	M <u>h-1</u> _1_1_1_ 		
00	0-E			·+								·	-								T	
	YENE J												1	10200	)			• + - + +	ii i i i		· · · · · · · · · · · · · · · · · · ·	
	ENY			1								1	-0									
											1		1									
	ENY	· · · ·	2	2 Sat	e-Time - Da	toTime					1	Mon	<u>ц</u>		10'1				10° Data Tima Hours II	10 ¹ Start : Sep-16-2012 11:51:30]	10 ²	

#### * How Much Oil Should it Produce?


#### 🗱 x64ODSI-Well Analyzer - C:\WORK\RT Software Demos\Deepwater Water Hit RTS Run.ProData - [Real Time Testing]

<u>File Memory Analysis Plot View Tools Help</u>

Inputs	Summary	Outputs	
--------	---------	---------	--

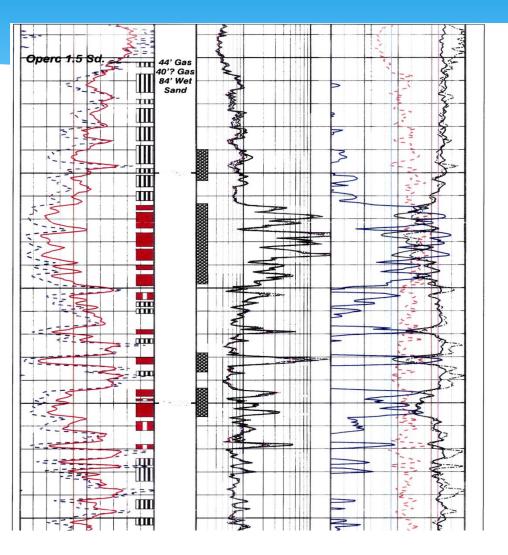
#### Summary PBU DD PTA/Productivity HC Volumes 10-MBAL Derivative OilWaterRates Analysis Events

Date Time	Oil Produced	PBU Duration	Pres	z-Factor	1Φ- MBAL	GIP SLD @P=0	GIP SLD @P ab=	GIP 1Φ-MBAL @P=0	GIP 1Φ-MBAL @ab=NaN	GIP 1Φ-MBAL geo @P=0	GIP 1Φ-MBAL geo @ab=NaN	m Pres	m 1Φ-MBAL	m 1Φ- MBAL G
MM/dd/yyyy HH:mm:ss	MMBBL	HOURS	PSIA	dimless	PSIA	MMBBL	MMBBL	MMBBL	MMBBL	MMBBL	MMBBL	PSIA/MMBBL	PSIA/MMBBL	PSIA/M
01/01/0001 00:00:0	0.000		12232	4.145	2950.8									
06/06/2012 22:56:00	0.007	37	12241	4.148	2951.21									
06/13/2012 07:11:00	0.053	68	12283	4.159	2953.16									
06/19/2012 04:11:00	0.122	15	12271	4.156	2952.60									
06/27/2012 00:33:00	0.214	65	12245	4.149	2951.39									
07/08/2012 23:54:00	0.421	21	12145	4.121	2946.75									
08/21/2012 07:59:30	1.160	12	12034	4.091	2941.56									
09/07/2012 13:14:3	1.223	319	11996	4.081	2939.7	63.4	63.4	326.8		185.1		-192.9	-9.0	-18.1
09/10/2012 04:08:30	1.252	13	12028	4.089	2941.26	63.4	63.4	326.8		185.1		-192.9	-9.0	-18.1
09/16/2012 11:51:30	1.343	20	12005	4.083	2940.18	63.4	63.4	326.8		185.1		-192.9	-9.0	-18.1
10/16/2012 00:48:3	1.745	89	11912	4.058	2935.8	66.2	66.2	340.2		192.6		-184.8	-8.7	-17.3



#### Deepwater Oil - Conclusions

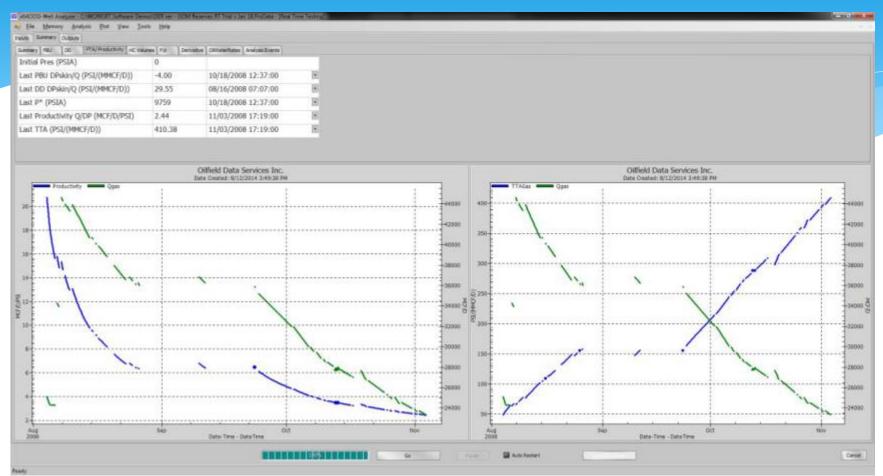
- Err... no need to panic, it's been making water since
   Day One
- * Min In-place oil = 65 MM STB
- * Max In-place oil = 260 MM STB
- * Min recoverable oil = 40-ish MM STB
- Enough Oil to justify work-over... but, the well doesn't need a work-over


#### Deep GOM Shelf – Gas/Condensate

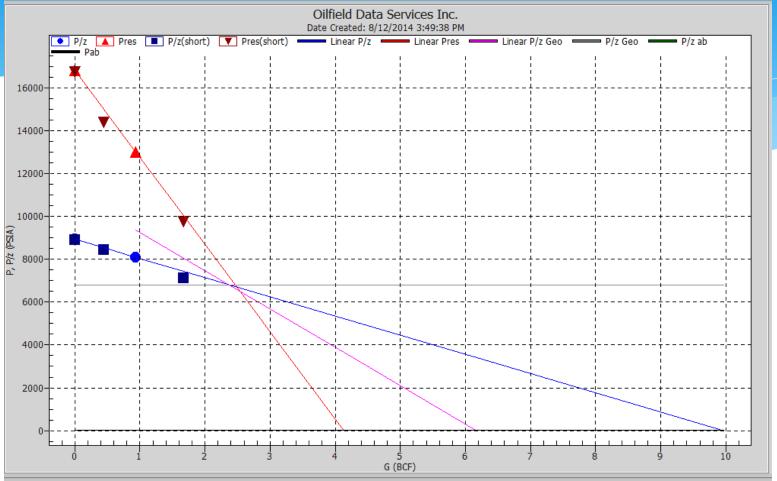
- * 18,000 psia Pinitial; 330 degF
- * Initial Flowback 20 MMscf/D; 400 BOPD
- * Objectives:
  - * Can we pull it harder?
  - * How big is it?
  - * No, really... how big is it? How much is water?
  - * What's up with the perms being all over the place?

### **GOM Shelf IPT**

- Gulf Of Mexico Gas Condensate Well
- Has SCADA WHP Gauge + Instant Separator Gas and Periodic Liquid Rates
- Have To Apply Liquid Residence Time (Else Turbine Meter Data Would Result In High Or Low Rates Due To Separator Dumps)
- Objectives:
  - Calculate Liquid Rates
  - Analyze Build-up Tests
  - Split Apparent Reserves into Components

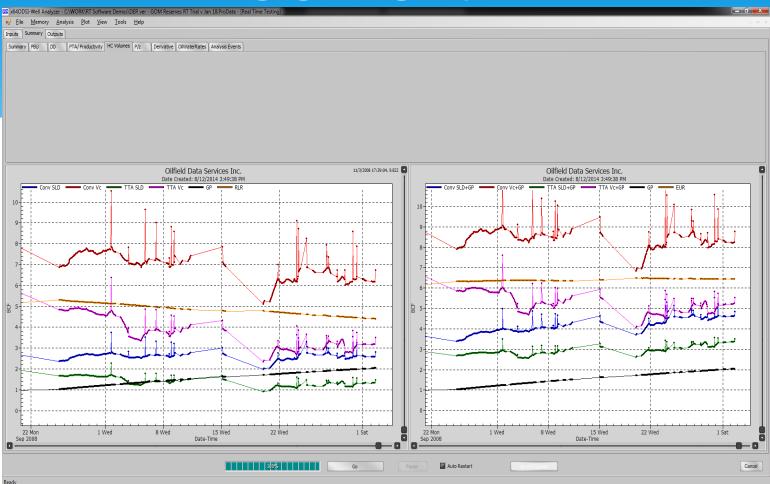

# Logs – GOM Shelf




#### **GOM Shelf IPT**

۰.	Marriery Analysis I	Dat Yew Justs Helt																				
3	unmary Outpate																					
-	78U 00 F7A/R	nductody   +C values   P/r	Dense	the Oliviati	eRates A	wirst Event	1															
	Start D/T MPInumynyy Normerse	End D/T ddHanegyyy blczaraces	Test Longth Hours	Tast Type	WEEN puts	weard pain	DHGP1 pein	Designet gaaa	Really pade	anat prin	QGasi Mcf/D	QGas Pict/D	Pares	Shin	DPskan pri	Pillar pens	-	DiPu/10 post/PRPsed	Report Link	Graph Link		
	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	03Aug2008 04:19:00 15Aug2008 16:49:00	8.4 7.2	0D PBU	13876 8642	13239 11313	-1	4	16720	16174	0 40554	15300	9.1 16	-1.9 1.3		15899 14374	150 83	-14.98	ODSIRTERS 2008Aug62 DOSIRTERS 2008Aug15	ODSINTREP 2508Aug02 UNITREP 2508Aug02		
	the second second second second second second second second second second second second second second second se	225ep2008 17:01:00	267.2	PBU	7505	10128	-1	-4	11115	1000000	36203	Contraction of the	20.1	2.3		13009	72	the second second second second second second second second second second second second second second second s	ODSIRTRes 20085en11	AND A REAL FOR ADDITIONAL		
	170ct2008 03:43:00	180ct2006 12:37:00	32.9	PBU	5448	7046	-1	-1	8429	9292	26998	26998	12.9	-0.8	-105	9759	116	-4	0053879au 20100:117 8	ODERTRes 20090x117	2	
				Olfield	Data Se	wices In	с.												Offield Data	Services Inc.		
				late Cinitie											_				Date Orested: 8/12			
	-	an (\$90											45000	26000	1	m		Qpa				-T-
0	È												40096	14000			D					1
	ļ												35000	12900	EIL.			11-		-		-
	-												30078	10000	E					KI	These	1
	L					n -				1		Т	23008 g		EIN	T	4				HUT	
												+	20094	6000						M		12
10					-	-							15008	4000							11-11-	T
	Ē												10000	2000								
													0									
10	L	32 We			- Term - Da	tu Time	***		1	Set.			1		Ang		-		Sep Data-Time	DataTime	New	
								105		100						-Bastari -						10

- Permeability ~ 15 md, Skin Is Low And Remains Constant
- Reservoir Pressure Drops 6000 psia
- Reservoir Appears To Be In Depletion Drive




- No Major Shifts In Productivity (No Shifts In Scalar Value Or Slope)
- Inverse Productivity indicates Pseudo Steady-State Response



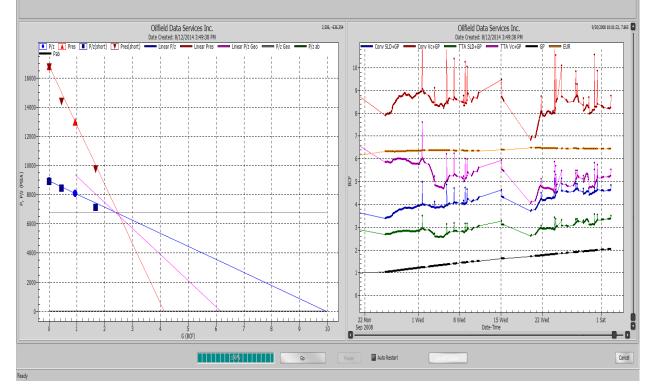
• P/Z Calculation and SLD-P Calculation Gives Us 4-10 BCF

Slide 163



- Running Energy And Material Balances
- LHS: Remaining Apparent Gas Volume
- RHS: Total Gas Volume
- This can be Compared With P/Z Results

#### GOM Shelf – Static and Flowing MBALS


64ODSI-Well Analyzer - C	WORK\RT Soft														
PT 14 1 1				OM Reserves F	RT Trial v Jan	18.ProData - [Real Tin	ne Testing]		_		_				
<u>File Memory Analy</u>	ysis <u>P</u> lot <u>V</u>	iew <u>l</u> ools	Help												
uts Summary Outputs			(F111)												
	PTA/ Productivit	-		1		Analysis Events	:						:		
ate Time		PBU Duration	Pres	z-Factor	P/z	GIP SLD @P=0	GIP SLD @P ab=15	GIP P/z @P=0	GIP P/z @P/z ab=15	GIP P/z geo @P=0	GIP P/z geo @P/z ab=15	m Pres	m Pz	m Pz Geo	
IM/dd/yyyy HH:mm:	ss BCF	HOURS	PSIA	dimless	PSIA	BCF	BCF	BCF	BCF	BCF	BCF	PSIA/BCF	PSIA/BCF	PSIA/BC	
1/01/0001 00:00	:0 0.000		16800	1.883	8922.6										
3/03/2008 09:55:00	0.005	6	16728	1.878	8908.94										
8/15/2008 16:49:00		7	14374		8419.16										
9/22/2008 17:01		267	13009		8088.4		4.1	10.0	10.0	6.2	6.2	-4062.3	- <b>893.9</b>	-1787.	
0/18/2008 12:37:00	1.667	33	9759	1.374	7101.35	4.1	4.1	10.0	10.0	6.2	6.2	-4062.3	-893.9	-1787.9	
						ervices Inc. 2014 3:49:38 PM			2.506, -636	.354			Oilfield Data Date Created: 8/12		9/30/2008 10:01:32, 7
P/z A	Pres 🔳 P/z(	short) 💌 F	Pres(short)	Lin	ear P/z	Linear Pres	Linear P/z Geo	P/z Geo	P/z ab		Conv SLD+GP	Conv Vc+GP	TTA SLD+GP	TTA Vc+GP	GP EUR
F 🕌		1					1			10			j		
5000														4	
										9					
4000											~~~	Nat	the fill the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		
-										8					- prod
F															
2000															
										6		·			
0000		K								t III Et			1 hor		
- t 🍋 -		N								눒 5					······································
вооо	· • • • • • • • • • • • • • • • • • • •					· <del> </del>	·						1 . have		Jun
F										4+-+					
6000						·	· · · · · · · · · · · · · · · · · · ·						1 11		1 produced
				1											~
4000			<u>\</u>	$\sim$						2		-+			····
			$\sim$							E	=				
-				$\mathbf{X}$						1-					
2000															
				X											
0					· · · · ·	······································				22 Mon	1	Wed	8 Wed	15 Wed	22 Wed 1 Sat
	1	2	3	4		5 6	7	8 9	10	Sep 2008	1		Date	-Time	1 Jal
					G	(BCF)									
							100%		Go	Pause	Auto Restart	SaveDTC	lumn		Ca

🗱 x640DSI-Well Analyzer - C:\WORK\RT Software Demos\DER ver - GOM Reserves RT Trial v Jan 18.ProData - [Real Time

• LHS:

- SLD/Straight Line
   Depletion (Red)
- P/Z
   Expansion/Depletion:
   (Blue)
- RHS:
  - Conventional Expansion: (Red)
  - Conventional SLD: (Blue)
  - TTA Compressibility: (Purple)
  - TTA SLD: (Green)
  - Gp: Black
  - Static MBAL To The Gas/Water Contact: (Orange)

Summary PBU DD PT	A/ Productivity	[UC Values]	0/2			Analysis Events								
	1	:	•		1									
Date Time		PBU Duration	Pres	z-Factor	P/z	GIP SLD @P=0	GIP SLD @P ab=15	GIP P/z @P=0	GIP P/z @P/z ab=15	GIP P/z geo @P=0	GIP P/z geo @P/z ab=15	m Pres	m Pz	m Pz Geo
MM/dd/yyyy HH:mm:ss	BCF	HOURS	PSIA	dimless	PSIA	BCF	BCF	BCF	BCF	BCF	BCF	PSIA/BCF	PSIA/BCF	PSIA/BC
01/01/0001 00:00:0	0.000		16800	1.883	8922.6									
08/03/2008 09:55:00	0.005	6	16728	1.878	8908.94									
08/15/2008 16:49:00	0.445	7	14374	1.707	8419.16									
09/22/2008 17:01:0	0.933	267	13009	1.608	8088.4	4.1	4.1	10.0	10.0	6.2	6.2	-4062.3	-893.9	-1787.
10/18/2008 12:37:00	1.667	33	9759	1.374	7101.35	4.1	4.1	10.0	10.0	6.2	6.2	-4062.3	-893.9	-1787.9



#### **GOM Shelf HP-HT Conclusions**

- * Skin & Perm are fluctuating due to crossflow and differential depletion in high-perm zones
- * Moderate Perm with Low Skin
- * Gas on top of dead-leg water

Reservoir Volume: 10 BCF of potential elastic energy

- * 3 BCF of water (dead leg)
- * 1.5 BCF of rock compaction
- * 5.5 BCF of Mobile Gas
- * 1.0 BCF of "Tight" Gas

#### Notes on the Case Studies:

At no time was the pressure data "smoothed" At no time was the data forced to fit a model At no time was the "answer" provided ahead of time

If you let it, the well will tell you what it's volume is made of and what it can produce

Analyze the Data Without Imposing Bias!

# Thoughts, Musings & Conclusions

#### What is Good Oilfield Management?

- * Maximize NPV
- * Maximize Recoverable Reserves
- * Avoid waste (time/money/resources)
- * Mitigate/minimize risk (Ops/Reserves/HSE)
- * Learn from your mistakes (and successes)
- MAKE BETTER DECISIONS IN A TIMELY FASHION

#### What is BAD Oilfield Management?

- Maximize bonus
- * Maximize 'booked' reserves
- * The INSIDE View eliminate/ignore contrary data
- * Falling in love with a rate
- * Wait until a problem is obvious (and expensive to fix)
- Hope no one notices (until you've moved on) make sure no one takes ownership
- * Shoot the messenger
- Make the decision that's best for you, not the company

# What are the Consequences of Automated Monitoring/Surveillance?

- Democratized information/results
  - * Can spend time discussing what it means
  - * Easier to translate to other departments/silos
  - * Less finger pointing and more inclusive work processes
- * Quicker Decisions
  - Reach conclusions on what it means
  - * Easier to focus on NPV of Decisions
- * Quicker Actions/Inactions

#### **Conclusions: RT Well Evaluation**

- Proper Instrumentation and Visualization Software are the 1st Step (Don't Drop Bits!)
- * Closed-Loop Solutions for the Wellbore and Reservoir make it possible to quickly check system model
- * Do NOT impose a "static" model on the well
- Warning an Engineer when (or before) something bad happens is more important than being accurate to the 9th decimal place
- * Checking the results of an Automated Calculation is a lot easier and more timely than doing it yourself

## Final Thoughts

- * This technology is already here!
- Understand the physics not just the software package
- * Always know:
  - * How much MONEY is left in the ground?
  - * How fast can I get it out (safely)
  - * Is the performance changing?
- * Compare NPV remaining vs. Cost of a "fix"
- * Seek out non-biased results

# Chris Fair Oilfield Data Services, Inc. chris.fair@oilfielddataservices.com www.oilfielddataservices.com

March 30, 2016 Total - Pau